Sketch the graph of the function

a) \(f(1)=[[1]]+[[-1]]=1\pm1=0\)

\(f(0)=0\)

\(f(\frac{1}{2})=0\pm1=-1\)

\(f(-2.7)=-3+2=-1\)

b) \(\lim_{x \rightarrow 1}f(x)=-1\)

\(\lim_{x \rightarrow 1+}f(x)=-1\)

\(\lim_{x \rightarrow \frac{1}{2}}f(x)=-1\)

c) f is continuous for all real numbers except \(0,\pm 1,\pm 2,\pm 3, \pm 4\cdots\)