 # Get help with trigonometric functions

Recent questions in Trigonometric Functions dammeym 2022-08-20

### Evaluate the trigonometric function using its period as an aid. $\mathrm{cos}\left(-13\frac{\pi }{3}\right)$ Brugolino7t 2022-08-20

### Which pair of angles has congruent values for the${\mathrm{sin}x}^{\circ }$ and the ${\mathrm{cos}y}^{\circ }$?a. ${35}^{\circ };{55}^{\circ }$b. ${35}^{\circ };{145}^{\circ }$c. ${35}^{\circ };{70}^{\circ }$d. ${35}^{\circ };{35}^{\circ }$ Eden Serrano 2022-08-18

### Use an Addition or Subtraction Formula to write the expression as a trigonometric function of one number, and then find its exact value.$\frac{\mathrm{tan}\frac{\pi }{18}+\mathrm{tan}\frac{\pi }{9}}{1-\mathrm{tan}\frac{\pi }{18}\mathrm{tan}\frac{\pi }{9}}$ sponsorjewk 2022-08-18

### When can and can't the two-sided limits exist? musicbachv7 2022-08-17

### Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function.$f\left(x,y\right)=6{e}^{x}\mathrm{cos}\left(y\right)$local maximum value(s)=?local minimum value(s)=?saddle point(s) (x,y,f)=? ahredent89 2022-08-08

### Rewrite the expression as an equivalent expression thatdoesn't contain powers of trigonometric functions greater than 1. $\mathrm{cos}4x$ Alonzo Odom 2022-08-01

### Find the exact value.$\mathrm{tan}\left(6\pi \right)$ Bernard Boyer 2022-07-27

### $h\left(t\right)=\mathrm{cot}\left(t\right)$[(3.14)/(4), ((3)(3.14)/(4))]Find the average rate of change of the function over the given interval or intervals. Libby Owens 2022-07-27

### t is a real number and P=(x,y) is the point on the unit circlethar corresponds to t. Find the exact values of the six trigonometric functions of t.$\left(\frac{1}{2},\frac{-\sqrt{3}}{2}\right)$ Darryl English 2022-07-25

### the solid lies between planes perpendicular to the x-axis at x=-1 and x=1. the cross-sections perpendicular to the x-axisarea. circles whose diameters stretch from the curve $y=-\frac{1}{\sqrt{1+{x}^{2}}}$ to the curve $y=\frac{1}{\sqrt{1+{x}^{2}}}$b. vertical squares whose base edges run along the same ends Nelson Jennings 2022-07-25

2022-04-01

2022-03-21

2022-02-08

### Let ${S}_{n}=\sum _{j=1}^{n}\mathrm{sin}\left(\sqrt{j\phantom{\rule{0.167em}{0ex}}}\pi \right)$. Show ${S}_{\left(2M{\right)}^{2}}<0$ and ${S}_{\left(2M+1{\right)}^{2}}>0\phantom{\rule{1em}{0ex}}\left(M=1,2,3,...\right)$ . kejpsy 2022-01-26

### Find coordinate points where the tangent line is horizontal for $f\left(x\right)=-\mathrm{sin}\left(8x\right)+6\mathrm{cos}\left(4x\right)-8x$ Tessa Leach 2022-01-25

### Find modulus and argument of $\omega =\frac{\mathrm{sin}\left(P+Q\right)+i\left(1-\mathrm{cos}\left(P+Q\right)\right)}{\left(\mathrm{cos}P+\mathrm{cos}Q\right)+i\left(\mathrm{sin}P-\mathrm{sin}Q\right)}$ pozicijombx 2022-01-25

### Given that $\mathrm{tan}\frac{x}{2}=\frac{1-\mathrm{cos}\left(x\right)}{\mathrm{sin}\left(x\right)}$, deduce that $\mathrm{tan}\frac{\pi }{12}=2-\sqrt{3}$ I know $\mathrm{tan}\frac{x}{2}=\frac{1-\mathrm{cos}\left(x\right)}{\mathrm{sin}\left(x\right)}$ is true and I can prove it by squaring and taking a square root of the right side then I multiply by $\frac{0.5}{0.5}$. And I will use $\mathrm{cos}\frac{x}{2}=\sqrt{\frac{1+\mathrm{cos}x}{2}}$ and $\mathrm{sin}\frac{x}{2}=\sqrt{\frac{1-\mathrm{cos}x}{2}}$ But I do not understand the part of deducing. poveli1e 2022-01-24

### If $\mathrm{cos}2v=-\frac{19}{}$ and v is acute, then determine the value of v I have tried using the double angle identity $\mathrm{cos}2v={\mathrm{cos}}^{2}v-{\mathrm{sin}}^{2}v$ Ive Maximus George 2022-01-24

### Find the maximum angle X in the range ${0}^{\circ }\le x\le {360}^{\circ }$ which satisfies the equation ${\mathrm{cos}}^{2}\left(2x\right)+\sqrt{3}\mathrm{sin}\left(2x\right)-\frac{74}{=}0$ Tori Hines 2022-01-24

### Why must x be acute for the identity $\sqrt{\frac{1-\mathrm{sin}x}{1+\mathrm{sin}x}}=\mathrm{sec}x-\mathrm{tan}x$ to hold true?

When you need someone to help you solve trigonometric functions, remember that you should understand the basics in any case. As a field of Geometry, Trigonometry can only be mastered with the help of examples. Take your time to look through the list of questions and related answers.

It will help you to practice various approaches and find the best solutions for your particular task. If what you need is not included below, remember that you should use the templates below to understand the rules. By doing so, you will achieve success!