# Get help with trigonometric functions Recent questions in Trigonometric Functions
Trigonometric Functions
ANSWERED ### The formula E = IZ, where E represents voltage, I represents current, and Z represents impedance (a measure of opposition to a sinusoidal electric current), is used in electrcal engineering. Each variable is a complex number. Use the formula to find the missing quantity for the given conditions. Then convert the given conditions to trigonometric form and check your result. $$I=10+2i, E=4+5i$$

Trigonometric Functions
ANSWERED ### Write the trigonometric expression as an algebraic expression. $$\displaystyle{\cos{{\left({\arcsin{{x}}}−{\arctan{{2}}}{x}\right)}}}$$

Trigonometric Functions
ANSWERED ### $$\displaystyle{\sec{{2}}}{x}-{1}={0}{\left[{0},{2}\pi\right)}$$ solve for x

Trigonometric Functions
ANSWERED ### Use an Addition or Subtraction Formula to write the expression as a trigonometric function of one number, and then find its exact value. $$\displaystyle{\left({\cos}\right)}\frac{{{13}\pi}}{{15}}{\cos{{\left(-\frac{\pi}{{5}}\right)}}}-{\left({\sin}\right)}\frac{{{13}\pi}}{{15}}{\sin{{\left(-\frac{\pi}{{5}}\right)}}}$$

Trigonometric Functions
ANSWERED ### Select the point on the terminal side of 0. $$\displaystyle{0}=-{60}°$$ (a) $$\displaystyle{\left(-{1},-{1}\right)}$$ (b) $$\displaystyle{\left({1},-√{3}\right)}$$ (c) $$\displaystyle{\left(-√{3},{1}\right)}$$

Trigonometric Functions
ANSWERED ### evaluate the function for the indicated values. $$\displaystyle{f{{\left({x}\right)}}}={\left[{x}\right]}.{f{{\left({2.1}\right)}}}$$

Trigonometric Functions
ANSWERED ### Find the exact value of each expression. $$\displaystyle{\left({\tan}\right)}\frac{{{17}\pi}}{{12}}$$

Trigonometric Functions
ANSWERED ### $$\displaystyle\frac{{{1}+{\cos{{x}}}}}{{\sin{{x}}}}={\csc{{x}}}+{\cot{{x}}}$$

Trigonometric Functions
ANSWERED ### The terminal side of an angle $$\theta$$ in standard position intersects the unit circle at $$\displaystyle{\left(\frac{{5}}{{13}},\frac{{12}}{{13}}\right)}$$. What is $$\sin (\theta)$$? Write your answer in simplified, rationalized form.

Trigonometric Functions
ANSWERED ### $$\tan 28^{\circ} = \cot ?$$

Trigonometric Functions
ANSWERED ### $$\displaystyle{\tan{{\left({x}\right)}}}{\sin{{\left({x}\right)}}}+{\sec{{\left({x}\right)}}}{{\cos}^{{2}}{\left({x}\right)}}={\sec{{\left({x}\right)}}}$$

Trigonometric Functions
ANSWERED ### $$\displaystyle\frac{{\sin{{\left({a}-{b}\right)}}}}{{\cos{{a}}}}{\cos{{b}}}={\tan{{a}}}-{\tan{{b}}}$$

Trigonometric Functions
ANSWERED ### If $$A = 40^{\circ}, B = 60^{\circ}$$, and $$a = 20$$, find b.

Trigonometric Functions
ANSWERED ### $$\frac{\tan\alpha+\cot\alpha}{\sin\alpha-\cos\alpha}=\sec^2\alpha+\csc^2\alpha$$

Trigonometric Functions
ANSWERED ### $$\displaystyle{\sin{{\left({2}{{\cos}^{{-{{1}}}}\times}{\left(\frac{{\sqrt{{2}}}}{{2}}\right)}\right)}}}$$

Trigonometric Functions
ANSWERED ### Identify the surface whose equation is given. $$p=\sin\theta\sin\phi$$

Trigonometric Functions
ANSWERED ### Use trigonometric identities to transform the left side of the equation into the right side. $$\tan \theta \cot \theta = 1$$

Trigonometric Functions
ANSWERED ### $$\displaystyle{\cos{{a}}}=\frac{{1}}{{3}}$$ $$\displaystyle{\sec{{a}}}$$

Trigonometric Functions
ANSWERED ### $$\sin\theta=\sqrt{\frac{2}{4}}$$

Trigonometric Functions
ANSWERED 