 Calculus 1: Derivatives questions and answers

Recent questions in Derivatives dedica66em 2022-01-17 Answered

Use differentials to give an informal justification for the chain rules for derivatives. Joan Thompson 2022-01-17 Answered

Use Version 2 of the Chain Rule to calculate the derivatives of the following functions. $$\displaystyle{y}={\sin{{\left({4}{x}^{{{3}}}+{3}{x}+{1}\right)}}}$$ osteoblogda 2022-01-17 Answered

Find all second-order partial derivatives for $$\displaystyle{f{{\left({x},{y}\right)}}}=-{4}{x}^{{{3}}}-{3}{x}^{{{2}}}{y}^{{{3}}}+{2}{y}^{{{2}}}$$. Sapewa 2022-01-17 Answered

Derivatives of constant multiples of functions Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left(-{\frac{{{7}{x}^{{{11}}}}}{{{8}}}}\right)}$$ Pamela Meyer 2022-01-17 Answered

Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({2}^{{{\left({x}^{{{2}}}\right)}}}\right)}$$ bmgf3m 2022-01-17 Answered

Find both first partial derivatives. $$\displaystyle{z}={\sin{{h}}}{\left({9}{x}+{8}{y}\right)}$$ $$\displaystyle{\frac{{\partial{z}}}{{\partial{x}}}}=$$ $$\displaystyle{\frac{{\partial{z}}}{{\partial{y}}}}=$$ Jason Yuhas 2022-01-17 Answered

Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({{\ln}^{{{3}}}{\left({3}{x}^{{{2}}}+{2}\right)}}\right)}$$ Sallie Banks 2022-01-17 Answered

Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{y}\right.}}}}{\left({y}^{{{\sin{{y}}}}}\right)}$$ Russell Gillen 2022-01-17 Answered

Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({x}^{{{\tan{{x}}}}}\right)}$$ William Cleghorn 2022-01-17 Answered

Compute the first-order partial derivatives. $$\displaystyle{z}=\frac{{x}}{{y}}$$ crealolobk 2022-01-17 Answered

Find all first partial derivatives, and evaluate each at the given point. $$\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{2}}}-{y},{\left({0},{2}\right)}$$ Frank Guyton 2022-01-17 Answered

Find all first partial derivatives. $$\displaystyle{z}={\ln{{\left({x}^{{{2}}}+{y}^{{{2}}}+{1}\right)}}}$$ Mary Keefe 2022-01-16 Answered

Higher-order derivatives Find f'(x), f''(x), and f'''(x). $$\displaystyle{f{{\left({x}\right)}}}={\frac{{{1}}}{{{x}}}}$$ James Dale 2022-01-16 Answered

Compute the first-order partial derivatives. $$\displaystyle{z}={9}-{x}^{{{2}}}-{y}^{{{2}}}$$ Stefan Hendricks 2022-01-16 Answered

Use the rules for derivatives to find the derivative of function defined as follows. $$\displaystyle{y}={4}{x}^{{{2}}}{\left({3}{x}-{2}\right)}^{{{5}}}$$ Alan Smith 2022-01-16 Answered

Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({x}^{{\pi}}\right)}$$ kerrum75 2022-01-16 Answered

Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({\sin{{\left({\ln{{x}}}\right)}}}\right)}$$ Miguel Reynolds 2022-01-16 Answered

Determine whether each of the following statements is true or false, and explain why: The derivative of a sum is the sum of the derivatives. Dowqueuestbew1j 2022-01-16 Answered

Find both first partial derivatives. $$\displaystyle{h}{\left({x},{y}\right)}={e}^{{-{\left({x}^{{{2}}}+{y}^{{{2}}}\right)}}}$$ compagnia04 2022-01-16 Answered

...