\(\displaystyle\sqrt{{\left({x}+{8}\right)}}+\sqrt{{\left({x}+{15}\right)}}=\sqrt{{\left({9}{x}+{40}\right)}}\)

Show that f is inverse of g and vice-versa, if \(f(x)=x-6\) and \(g(x)=x+6\)

g(x) \(\displaystyle=\frac{{{2}{x}^{{2}}-{3}{x}-{20}}}{{{x}-{4}}},{\quad\text{if}\quad}{x}\ne{4}\) and \(=kx-15\), if \(x=4\) Evaluate the constant k that makes the function continuous.

\(\displaystyle{f}:{R}\to{R}\) \(f(x)=7x-3\) Prove that f is onto.

Given: \(n=3\). 4 and 2i are zeros. \(f(-1)=75\) Find an nth-degree polynomial function with real coefficients

\(\displaystyle{f}:{R}\to{R}\) \(f(x)=8x-2\) \(f(a)=f(b)\) \(\displaystyle{a},{b}\in{R}\) Prove that f is one-to-one.

Given an indicated variable: \(S=180n-360\) Solve it for n

Show that \(f(x)=x-6\) and \(g(x)=x+6\) are inverses of each other.