To prove Use the identity This can be rewritten as returning to our issue LHS Remember the square-difference rule. We need to apply that for Undefined control sequence \cancel RHS Hence, LHS = RHS thus proved.
yegumbi4q0
Expert
2023-01-03Added 3 answers
Choose the aspect that will be the most challenging to work on first. In this case, it's the left side. Recall the Pythagorean trigonometric identity, \(\displaystyle{\color{red}{{{\tan}^{{2}}{x}}}}={\color{green}{{{\sec}^{{2}}{x}}-{1}}}\). Using this identity, replace \(\displaystyle{\color{red}{{{\tan}^{{2}}{x}}}}\) in the equation with \(\displaystyle{\color{green}{{{\sec}^{{2}}{x}}-{1}}}\). Left side: \(\displaystyle\frac{{\color{red}{{{\tan}^{{2}}{x}}}}}{{{\sec{{x}}}-{1}}}\) \(\displaystyle\frac{{{\color{green}{{{\sec}^{{2}}{x}}-{1}}}}}{{{\sec{{x}}}-{1}}}\) Since ""\(\displaystyle{{\sec}^{{2}}{x}}-{1}\)"" is a difference of squares, it can be broken down into \(\displaystyle{\color{\quad\textor\quadan\ge}{{\sec{{x}}}+{1}}}\) and \(\displaystyle{\color{blue}{{\sec{{x}}}-{1}}}\). \(\displaystyle\frac{{{\left({\color{\quad\textor\quadan\ge}{{\sec{{x}}}+{1}}}\right)}{\left({\color{blue}{{\sec{{x}}}-{1}}}\right)}}}{{{\sec{{x}}}-{1}}}\) You will notice that ""\(\displaystyle{\sec{{x}}}-{1}\)"" appears both in the numerator and denominator, so they can both be cancelled out. \(\displaystyle\frac{{{\left({\sec{{x}}}+{1}\right)}{\color{red}\cancel{{\color{black}{{\left({\sec{{x}}}-{1}\right)}}}}}}}{{\color{red}\cancel{{\color{black}{{\left({\sec{{x}}}-{1}\right)}}}}}}\) \(\displaystyle{\sec{{x}}}+{1}\) \(\displaystyle\therefore\), LS\(\displaystyle=\)RS.