mronjo7n

2021-11-17

Use trigonometric substitution to integrate (Don’t forget to write your answer in terms of the original variable xand do not leave trigonometric functions evaluated at inverse trigonometric functions)

$\int \frac{\sqrt{{x}^{2}-1}}{{x}^{4}}dx$

Ralph Lester

Beginner2021-11-18Added 16 answers

Step 1

Given:

To find:

Use trigonometric substitution to integrate above function.

Step 2

Apply trigonometric substitution:

Rewrite using trigonometric identities,

Substitute

using the formula,

On back substitution,

On simplifying above function,

0

What is the Mixed Derivative Theorem for mixed second-order partial derivatives? How can it help in calculating partial derivatives of second and higher orders?

How do I find the y-intercept of a parabola?

What are the vertices of $9{x}^{2}+16{y}^{2}=144$?

How to determine the rate of change of a function?

Why are the tangents for 90 and 270 degrees undefined?

How to find the center and radius of the circle ${x}^{2}+{y}^{2}-6x+8y=0$?

What is multiplicative inverse of a number?

How to find the continuity of a function on a closed interval?

How do I find the tangent line of a function?

How to find vertical asymptotes using limits?

How to find the center and radius of the circle ${x}^{2}-12x+{y}^{2}+4y+15=0$?

Let f be a function so that (below). Which must be true?

I. f is continuous at x=2

II. f is differentiable at x=2

III. The derivative of f is continuous at x=2

(A) I (B) II (C) I and II (D) I and III (E) II and IIIHow to find the center and radius of the circle given ${x}^{2}+{y}^{2}+8x-6y=0$?

How to find the center and radius of the circle ${x}^{2}+{y}^{2}+4x-8y+4=0$?

How to identify the center and radius of the circle ${(x+3)}^{2}+{(y-8)}^{2}=16$?