No, if two triangles have the same angles, they must be similar.

Question

asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).

Previous studies show that \( \sigma_1 = 19 \).

For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).

Previous studies show that \( \sigma_2 = 13 \).

Assume the pollution index is normally distributed in both Englewood and Denver.

(a) State the null and alternate hypotheses.

\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)

\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)

\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)

\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)

(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.

The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.

The standard normal. We assume that both population distributions are approximately normal with known standard deviations.

The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.

(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.

(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)

(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?

At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.

At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.

At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.

At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.

(f) Interpret your conclusion in the context of the application.

Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.

Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.

Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.

Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for

\( \mu_1 - \mu_2 \).

(Round your answers to two decimal places.)

lower limit

upper limit

(h) Explain the meaning of the confidence interval in the context of the problem.

Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.

Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.

Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.

Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.

asked 2021-04-25

The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius \(\displaystyle{R}={7.4}\times{10}^{{-{15}}}\) m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.

A. Find the radii of the two "daughter" nuclei of charge+46e.

B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.

C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit \(\displaystyle={1.66}\times{10}^{{-{27}}}\) kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).

A. Find the radii of the two "daughter" nuclei of charge+46e.

B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.

C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit \(\displaystyle={1.66}\times{10}^{{-{27}}}\) kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).

asked 2021-04-16

A child is playing on the floor of a recreational vehicle (RV) asit moves along the highway at a constant velocity. He has atoy cannon, which shoots a marble at a fixed angle and speed withrespect to the floor. The cannon can be aimed toward thefront or the rear of the RV. Is the range toward the frontthe same as, less than, or greater than the range toward the rear?Answer this question (a) from the child's point of view and (b)from the point of view of an observer standing still on the ground.Justify your answers.

asked 2021-03-12

Aidan knows that the observation deck on the Vancouver Lookout is 130 m above the ground. He measures the angle between the ground and his line of sight to the observation deck as \(\displaystyle{77}^{\circ}\). How far is Aidan from the base of the Lookout to the nearest metre?

asked 2021-05-09

The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus

\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)

where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.

Part A:

Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.

Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.

Part B:

A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).

Assume the following:

The top speed is limited by air drag.

The magnitude of the force of air drag at these speeds is proportional to the square of the speed.

By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?

Express the percent increase in top speed numerically to two significant figures.

\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)

where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.

Part A:

Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.

Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.

Part B:

A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).

Assume the following:

The top speed is limited by air drag.

The magnitude of the force of air drag at these speeds is proportional to the square of the speed.

By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?

Express the percent increase in top speed numerically to two significant figures.

asked 2021-04-11

The equation F=−vex(dm/dt) for the thrust on a rocket, can also be applied to an airplane propeller. In fact, there are two contributions to the thrust: one positive and one negative. The positive contribution comes from air pushed backward, away from the propeller (so dm/dt<0), at a speed vex relative to the propeller. The negative contribution comes from this same quantity of air flowing into the front of the propeller (so dm/dt>0) at speed v, equal to the speed of the airplane through the air.

For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.

For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.

asked 2021-01-17

A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)

(a) What is the level of significance?

State the null and alternate hypotheses.

\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)

(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)

What are the degrees of freedom?

\(df_{N} = ?\)

\(df_{D} = ?\)

What assumptions are you making about the original distribution?

The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.

(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)

(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?

At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.

(e) Interpret your conclusion in the context of the application.

Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.

(a) What is the level of significance?

State the null and alternate hypotheses.

\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)

(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)

What are the degrees of freedom?

\(df_{N} = ?\)

\(df_{D} = ?\)

What assumptions are you making about the original distribution?

The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.

(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)

(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?

At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.

(e) Interpret your conclusion in the context of the application.

Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.

asked 2021-01-31

Two right triangles are similar. The legs of the smaller triangle have lengths of 3 and 4. The scale factor is 1:3. Find the length of the hypotenuse of the larger triangle.

asked 2021-03-29

Two stationary point charges +3 nC and + 2nC are separated bya distance of 50cm. An electron is released from rest at a pointmidway between the two charges and moves along the line connectingthe two charges. What is the speed of the electron when it is 10cmfrom +3nC charge?

Besides the hints I'd like to ask you to give me numericalsolution so I can verify my answer later on. It would be nice ifyou could write it out, but a numerical anser would be fine alongwith the hint how to get there.

Besides the hints I'd like to ask you to give me numericalsolution so I can verify my answer later on. It would be nice ifyou could write it out, but a numerical anser would be fine alongwith the hint how to get there.

asked 2021-05-06

Two uniformly charged spheres are firmly fastened to andelectrically insulated from frictionless pucks on an airtable. The charge on sphere 2 is three times the charge onsphere 1. Draw the force diagram that correctly showsthe magnitude and direction of the electrostatic forces. Explain your reasoning.