Question

Solve (1+cosx)tanx/2 = sinx

Trigonometric equation and identitie
ANSWERED
asked 2020-12-30
Solve \(\displaystyle{\left({1}+{\cos{{x}}}\right)}\frac{{\tan{{x}}}}{{2}}={\sin{{x}}}\)

Answers (1)

2020-12-31

\(\displaystyle{\cos{{\left({x}\right)}}}={2}{\left({\cos{{\left(\frac{{x}}{{2}}\right)}}}\right)}^{{2}}-{1},{s}{o}\ {\cos{{\left({x}\right)}}}+{1}={2}{\left({\cos{{\left(\frac{{x}}{{2}}\right)}}}\right)}^{{2}},\)
\(\displaystyle{\tan{{\left(\frac{{x}}{{2}}\right)}}}=\frac{{\sin{{\left(\frac{{x}}{{2}}\right)}}}}{{\cos{{\left(\frac{{x}}{{2}}\right)}}}},\)
\(\displaystyle{\sin{{\left({x}\right)}}}={2}{\sin{{\left(\frac{{x}}{{2}}\right)}}}{\cos{{\left(\frac{{x}}{{2}}\right)}}}.\)
Therefore, the expression on the left is: \(\displaystyle{2}{\sin{{\left(\frac{{x}}{{2}}\right)}}}{\cos{{\left(\frac{{x}}{{2}}\right)}}}={\sin{{\left({x}\right)}}}.\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...