Solve (1+cosx)tanx/2 = sinx

Solve (1+cosx)tanx/2 = sinx

Question
Solve \(\displaystyle{\left({1}+{\cos{{x}}}\right)}\frac{{\tan{{x}}}}{{2}}={\sin{{x}}}\)

Answers (1)

2020-12-31

\(\displaystyle{\cos{{\left({x}\right)}}}={2}{\left({\cos{{\left(\frac{{x}}{{2}}\right)}}}\right)}^{{2}}-{1},{s}{o}\ {\cos{{\left({x}\right)}}}+{1}={2}{\left({\cos{{\left(\frac{{x}}{{2}}\right)}}}\right)}^{{2}},\)
\(\displaystyle{\tan{{\left(\frac{{x}}{{2}}\right)}}}=\frac{{\sin{{\left(\frac{{x}}{{2}}\right)}}}}{{\cos{{\left(\frac{{x}}{{2}}\right)}}}},\)
\(\displaystyle{\sin{{\left({x}\right)}}}={2}{\sin{{\left(\frac{{x}}{{2}}\right)}}}{\cos{{\left(\frac{{x}}{{2}}\right)}}}.\)
Therefore, the expression on the left is: \(\displaystyle{2}{\sin{{\left(\frac{{x}}{{2}}\right)}}}{\cos{{\left(\frac{{x}}{{2}}\right)}}}={\sin{{\left({x}\right)}}}.\)

0

Relevant Questions

asked 2021-01-19
Verify this triganomic identity you can only use 1 side to solve \(\displaystyle\frac{{{\cos{{x}}}-{\tan{{x}}}}}{{{\sin{{x}}}+{\cos{{x}}}}}={\cos{{x}}}-{\sec{{x}}}\)
asked 2021-01-28
Verify the identity \(\displaystyle\frac{{\cos{{x}}}}{{1}}-{\sin{{x}}}-{\tan{{x}}}=\frac{{1}}{{\cos{{x}}}}\)
asked 2020-11-05
Solve \(\displaystyle{\sin{{3}}}{x}+\frac{{\sin{{x}}}}{{\cos{{x}}}}+{\cos{{3}}}{x}={\tan{{2}}}{x}\)
asked 2020-10-18
If \(\displaystyle{\sin{{x}}}+{\sin{{y}}}={a}{\quad\text{and}\quad}{\cos{{x}}}+{\cos{{y}}}={b}\) then find \(\displaystyle{\tan{{\left({x}-\frac{{y}}{{2}}\right)}}}\)
asked 2020-12-28
simplify \((cosx/1+sinx)+(1+sinx/cosx)\)
asked 2020-11-01
Simplify the expression \(\displaystyle\frac{{\sec{{x}}}}{{\sin{{x}}}}-\frac{{\sin{{x}}}}{{\cos{{x}}}}\)
asked 2021-01-05

Solve \((2\sin x\cot x+\sin x+4\cot x-2)/(2\cot x+1)=\sin x-2\)

asked 2021-02-23
Prove that: \(\displaystyle{1}+\frac{{\cos{{x}}}}{{1}}-{\cos{{x}}}=\frac{{{\tan}^{{2}}{x}}}{{\left({\sec{{x}}}-{1}\right)}^{{2}}}\)
asked 2021-01-27
Prove that
\(\displaystyle{\left({\tan{{x}}}\right)}{\left({\sin{{2}}}{x}\right)}={2}–{2}{{\cos}^{{2}}}\)
asked 2021-03-02
How to prove the following:
\(\displaystyle{{\tan}^{{2}}{x}}+{1}+{\tan{{x}}}{\sec{{x}}}={1}+\frac{{\sin{{x}}}}{{{\cos}^{{2}}{x}}}\)
...