Express in terms of sin x: (cot^2x-1)/(csc^2x)

Express in terms of sin x: (cot^2x-1)/(csc^2x)

Question
Express in terms of sin x: \(\displaystyle\frac{{{{\cot}^{{2}}{x}}-{1}}}{{{{\csc}^{{2}}{x}}}}\)

Answers (1)

2020-12-02
\(\displaystyle\frac{{{{\cot}^{{2}}{\left({x}\right)}}-{1}}}{{{\csc}^{{2}}{\left({x}\right)}}}\)
\(\displaystyle=\frac{{{\left(\frac{{{\cos}^{{2}}{\left({x}\right)}}}{{{\sin}^{{2}}{\left({x}\right)}}}\right)}-{1}}}{{\frac{{1}}{{{\sin}^{{2}}{\left({x}\right)}}}}}\)
\(\displaystyle=\frac{{{\left({{\sin}^{{2}}{\left({x}\right)}}\right)}{\left({\left(\frac{{{\cos}^{{2}}{\left({x}\right)}}}{{{\sin}^{{2}}{\left({x}\right)}}}\right)}-{1}\right)}}}{{{\left({{\sin}^{{2}}{\left({x}\right)}}\right)}{\left(\frac{{1}}{{{\sin}^{{2}}{\left({x}\right)}}}\right)}}}\)
\(\displaystyle=\frac{{{{\cos}^{{2}}{\left({x}\right)}}-{{\sin}^{{2}}{\left({x}\right)}}}}{{1}}\)
\(\displaystyle={{\cos}^{{2}}{\left({x}\right)}}-{{\sin}^{{2}}{\left({x}\right)}}\)
\(\displaystyle={\left({1}-{{\sin}^{{2}}{\left({x}\right)}}\right)}-{{\sin}^{{2}}{\left({x}\right)}}\)
\(\displaystyle={1}-{2}{{\sin}^{{2}}{\left({x}\right)}}\)
0

Relevant Questions

asked 2021-01-17
Solve the equation \(\csc x - \sin x = \cot x \cos x\)
asked 2021-02-25
If \(\displaystyle{\cos{{x}}}=-\frac{{12}}{{13}}{\quad\text{and}\quad}{\csc{{x}}}{<}{0}\),
find \(\displaystyle{\cot{{\left({2}{x}\right)}}}\)
asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2020-11-12
Solve \(\displaystyle{\sec{{\left({30}\right)}}}+{\tan{{\left({45}\right)}}}-\frac{{\csc{{\left({60}\right)}}}}{{\sec{{\left({30}\right)}}}}+{\cos{{\left({60}\right)}}}+{\cot{{\left({45}\right)}}}\)
asked 2020-11-23
Solve the equation \(\frac{1}{\csc \theta-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}\)
asked 2021-02-19
Solve the equation \frac{\cot(x)-\tan(x)}{(\cot^{2}(x)-\tan^{2}(x)}=\sin x\cos x
asked 2021-03-02
How to prove the following:
\(\displaystyle{{\tan}^{{2}}{x}}+{1}+{\tan{{x}}}{\sec{{x}}}={1}+\frac{{\sin{{x}}}}{{{\cos}^{{2}}{x}}}\)
asked 2020-11-01

If \(\displaystyle{\sin{{x}}}={e}^{{y}},{0}{<}{x}{<}\pi,\) what is dy/dx in terms of x?
(A) \(\displaystyle-{\tan{{x}}}\)
(B) \(\displaystyle-{\cot{{x}}}\)
(C) \(\displaystyle{\cot{{x}}}\)
(D) \(\displaystyle{\tan{{x}}}\)
(E) \(\displaystyle{\csc{{x}}}\)

asked 2021-04-15
A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 235 m, and the car completes the turn in 33.0 s. (Enter only the answers in the input boxes separately given.)
(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors \(\displaystyle\hat{{{i}}}\) and \(\displaystyle\hat{{{j}}}\).
1. (Enter in box 1) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+{\left({E}{n}{t}{e}{r}\in{b}\otimes{2}\right)}{P}{S}{K}\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)
(b) Determine the car's average speed.
3. ( Enter in box 3) m/s
(c) Determine its average acceleration during the 33.0-s interval.
4. ( Enter in box 4) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+\)
5. ( Enter in box 5) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)
asked 2020-11-12
If \(\displaystyle{\cot{{\left(\theta\right)}}}={7}\), what is \(\displaystyle{\sin{{\left(\theta\right)}}},{\cos{{\left(\theta\right)}}},{\sec{{\left(\theta\right)}}}\) between 0 and \(\displaystyle{2}\pi\)?
...