Take the following gedankenexperiment in which two astronauts meet each other again and again in a perfectly symmetrical setting - a hyperspherical (3-manifold) universe in which the 3 dimensions are curved into the 4. dimension so that they can travel without acceleration in straight opposite directions and yet meet each other time after time.

On the one hand this situation is perfectly symmetrical - even in terms of homotopy and winding number. On the other hand the Lorentz invariance should break down according to GRT, so that one frame is preferred - but which one?

So the question is: Who will be older? And why?

And even if there is one prefered inertial frame - the frame of the other astronaut should be identical with respect to all relevant parameters so that both get older at the same rate. Which again seems to be a violation of SRT in which the other twin seems to be getting older faster/slower...

How should one find out what the preferred frame is when everything is symmetrical - even in terms of GRT

On the one hand this situation is perfectly symmetrical - even in terms of homotopy and winding number. On the other hand the Lorentz invariance should break down according to GRT, so that one frame is preferred - but which one?

So the question is: Who will be older? And why?

And even if there is one prefered inertial frame - the frame of the other astronaut should be identical with respect to all relevant parameters so that both get older at the same rate. Which again seems to be a violation of SRT in which the other twin seems to be getting older faster/slower...

How should one find out what the preferred frame is when everything is symmetrical - even in terms of GRT