Ive

Jason Yuhas
2021-12-31
Answered

Find the value of ${\int}_{-\pi}^{\pi}(4\mathrm{arctan}\left({e}^{x}\right)-\pi )dx$

Ive

Ive

You can still ask an expert for help

Mary Goodson

Answered 2022-01-01
Author has **37** answers

Let $f\left(x\right)=4\mathrm{arctan}\left({e}^{x}\right)-\pi$ . Then since $\mathrm{arctan}u+\mathrm{arctan}\frac{1}{u}=\frac{\pi}{2}$ (∗):

$-f(-x)=-4{\mathrm{arctan}e}^{-x}+\pi =-4(\frac{\pi}{2}-{\mathrm{arctan}e}^{x})+\pi =4{\mathrm{arctan}e}^{x}-\pi =f\left(x\right)$

(∗) can be proved geometrically:$\mathrm{arctan}u$ is the angle with opposite side u and adjacent side 1, and $\mathrm{arctan}\frac{1}{u}$ is the other acute angle in the right triangle. Their sum must thus be $\frac{\pi}{2}$ . Alternatively, differentiate the left-hand side and show it is constant, then choose a convenient value for u since any u works, say u=1.

(∗) can be proved geometrically:

autormtak0w

Answered 2022-01-02
Author has **31** answers

Write the integral as

$I={\int}_{-\pi}^{0}4\mathrm{arctan}\left({e}^{x}\right)-\pi dx+{\int}_{0}^{\pi}4\mathrm{arctan}\left({e}^{x}\right)-\pi dx$

Upon making the substitution u=−x, we find that

$I=-{\int}_{\pi}^{0}4\mathrm{arctan}\left({e}^{-u}\right)-\pi du+{\int}_{0}^{\pi}4\mathrm{arctan}\left({e}^{x}\right)-\pi dx$

$={\int}_{0}^{\pi}4\mathrm{arctan}\left({e}^{-x}\right)-\pi dx+{\int}_{0}^{\pi}4\mathrm{arctan}\left({e}^{x}\right)-\pi dx$

$={\int}_{0}^{\pi}4(\mathrm{arctan}\left({e}^{x}\right)+\mathrm{arctan}\left({e}^{-x}\right))-2\pi dx$

Note that

$\mathrm{arctan}(u+\mathrm{arctan}\left(\frac{1}{u}\right))=\{\begin{array}{cc}\frac{\pi}{2}& \text{}{\textstyle \phantom{\rule{1em}{0ex}}}\text{if}{\textstyle \phantom{\rule{1em}{0ex}}}\text{}u0\\ -\frac{\pi}{2}& \text{}{\textstyle \phantom{\rule{1em}{0ex}}}\text{if}{\textstyle \phantom{\rule{1em}{0ex}}}\text{}u0\end{array}$

In this case,$x\in [0,\pi ]$ , so $u={e}^{x}>0$ and $\mathrm{arctan}\left(u\right)+\mathrm{arctan}\left(\frac{1}{u}\right)=\frac{\pi}{2}$ , meaning that the integrand is the zero function. Hence, I=0.

Upon making the substitution u=−x, we find that

Note that

In this case,

karton

Answered 2022-01-08
Author has **368** answers

The answer expands on my comment, which remarked that the integrand of the given integral is twice the Gudermannian function, gd, which appears most famously in the equation governing the Mercator projection in cartography.

NSK

Differentiating the integrand gives

In particular, this derivative is even. Since evaluating the integrand at x=0 gives

for any a: In particular, the occurrence of

asked 2021-06-16

Airline passengers arrive randomly and independently at the passenger-screening facility at a major international airport. The mean arrival rate is 11 passengers per minute.

asked 2020-10-18

If $\mathrm{sin}x+\mathrm{sin}y=a{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\mathrm{cos}x+\mathrm{cos}y=b$ then find $\mathrm{tan}(x-\frac{y}{2})$

asked 2021-09-12

Establish identity

$\frac{1+\mathrm{tan}v}{1-\mathrm{tan}v}=\frac{\mathrm{cot}v+1}{\mathrm{cot}v-1}$

asked 2020-11-23

Solve the equation
$\frac{1}{\mathrm{csc}\theta -\mathrm{cos}\theta}=\frac{1+\mathrm{cos}\theta}{\mathrm{sin}\theta}$

asked 2021-02-25

If

find

asked 2022-01-29

Find the value of differentiated function

Let$f\left(x\right)=\mathrm{cos}\left[{\mathrm{cot}}^{-1}\left(\frac{\mathrm{cos}x}{\sqrt{1-\mathrm{cos}2x}}\right)\right]$ where $\frac{\pi}{4}<x<\frac{\pi}{2}$ ,then what is the value of $\frac{d\left(f\left(x\right)\right)}{d\left(\mathrm{cot}\left(x\right)\right)}$ ?

Let

asked 2020-12-28

simplify