We know that \(\displaystyle{\sin{{\frac{{\pi}}{{{3}}}}}}={\sin{{60}}}°\)

\(\displaystyle{\sin{{60}}}°={\frac{{\sqrt{{{3}}}}}{{{2}}}}={0.866}\)

\(\displaystyle{\sin{{60}}}°={\frac{{\sqrt{{{3}}}}}{{{2}}}}={0.866}\)

asked 2021-12-24

How do you evaluate \(\displaystyle{\sin{{\left({\frac{{\pi}}{{{6}}}}\right)}}}\) ?

asked 2021-12-21

Evaluate \(\displaystyle{\sin{{\frac{{\pi}}{{{4}}}}}}\).

asked 2021-12-10

Evaluate, please \(\displaystyle{\sin{{\left({\frac{{\pi}}{{{2}}}}\right)}}}\)

asked 2021-12-09

Solve \(\displaystyle{\sin{{\left({2}{x}\right)}}}-{\cos{{\left({x}\right)}}}={0}\) over the interval \(\displaystyle{0}\) to \(\displaystyle{2}\pi\).

asked 2021-09-13

Use an Addition or Subtraction Formula to write the expression as a trigonometric function of one number, and then find its exact value.

\(\displaystyle{\left({\cos}\right)}\frac{{{13}\pi}}{{15}}{\cos{{\left(-\frac{\pi}{{5}}\right)}}}-{\left({\sin}\right)}\frac{{{13}\pi}}{{15}}{\sin{{\left(-\frac{\pi}{{5}}\right)}}}\)

\(\displaystyle{\left({\cos}\right)}\frac{{{13}\pi}}{{15}}{\cos{{\left(-\frac{\pi}{{5}}\right)}}}-{\left({\sin}\right)}\frac{{{13}\pi}}{{15}}{\sin{{\left(-\frac{\pi}{{5}}\right)}}}\)

asked 2021-12-27

How do you simplify \(\displaystyle{\sin{{\left({{\tan}^{{-{1}}}{\left({x}\right)}}\right)}}}\)?

asked 2021-12-14

Simplify the expression, please:

\(\displaystyle{\sin{{\left({\arctan{{\left({x}\right)}}}\right)}}}\)

\(\displaystyle{\sin{{\left({\arctan{{\left({x}\right)}}}\right)}}}\)