A line L through the origin in RR^3 can be represented by parametric equations of the form x = at, y = bt, and z = ct.

A line L through the origin in RR^3 can be represented by parametric equations of the form x = at, y = bt, and z = ct.

Question
Alternate coordinate systems
asked 2021-01-30

A line L through the origin in \(\displaystyle\mathbb{R}^{{3}}\) can be represented by parametric equations of the form x = at, y = bt, and z = ct. Use these equations to show that L is a subspase of \(RR^3\)  by showing that if \(v_1=(x_1,y_1,z_1)\ and\ v_2=(x_2,y_2,z_2)\)  are points on L and k is any real number, then \(kv_1\ and\ v_1+v_2\)  are also points on L.

Answers (1)

2021-01-31
Let \(\displaystyle{v}_{{1}}={\left({x}_{{1}},{y}_{{1}},{z}_{{1}}\right)}{\quad\text{and}\quad}{v}_{{2}}={\left({x}_{{2}},{y}_{{2}},{z}_{{2}}\right)}\) be elements of L.Then
\(\displaystyle{\left\lbrace\begin{array}{c} {x}_{{1}}={a}{t}_{{1}}\\{y}_{{1}}={b}{t}_{{1}}\\{z}_{{1}}={c}{t}_{{1}}\end{array}\right.}{\quad\text{and}\quad}{\left\lbrace\begin{array}{c} {x}_{{2}}={a}{t}_{{2}}\\{y}_{{2}}={b}{t}_{{2}}\\{z}_{{2}}={c}{t}_{{2}}\end{array}\right.}\)
for some real numbers \(\displaystyle{t}_{{1}}{\quad\text{and}\quad}{t}_{{2}}\).
let \(\displaystyle{w}={v}_{{1}}+{v}_{{2}}={\left({x}_{{1}}+{x}_{{2}},{y}_{{1}}+{y}_{{2}},{z}_{{1}}+{z}_{{2}}\right)}\).Then
\(\displaystyle{\left\lbrace\begin{array}{c} {x}_{{1}}+{x}_{{2}}={a}{t}_{{1}}+{a}{t}_{{2}}={a}{\left({t}_{{1}}+{t}_{{2}}\right)}\\{y}_{{1}}+{y}_{{2}}={b}{t}_{{1}}+{b}{t}_{{2}}={b}{\left({t}_{{1}}+{t}_{{2}}\right)}\\{z}_{{1}}+{z}_{{2}}={c}{t}_{{1}}+{c}{t}_{{2}}={c}{\left({t}_{{1}}+{t}_{{2}}\right)}\end{array}\right.}\)
Hence the components of w are of the form \(\displaystyle{x}={a}{t},{y}={b}{t},{z}={c}{t}{f}{\quad\text{or}\quad}{t}={t}_{{1}}+{t}_{{2}}\).
Now let k be a real number. And consider \(\displaystyle{w}={k}{v}_{{1}}={\left({k}{x}_{{1}},{k}{y}_{{1}},{k}{z}_{{1}}\right)}\).Then
\(\displaystyle{\left\lbrace\begin{array}{c} {k}{x}_{{1}}={k}{a}{t}_{{1}}={a}{\left({k}{t}_{{1}}\right)}\\{k}{y}_{{1}}={k}{b}{t}_{{1}}={b}{\left({k}{t}_{{1}}\right)}\\{k}{z}_{{1}}={k}{c}{t}_{{1}}={c}{\left({k}{t}_{{1}}\right)}\end{array}\right.}\)
Hence the components of w are of the form \(\displaystyle{x}={a}{t},{y}={b}{t},{z}={c}{t}{f}{\quad\text{or}\quad}{t}={k}{t}_{{1}}\).
Then, by the subspace theorem, L is a subspace pf \(\displaystyle\mathbb{R}^{{3}}\).
0

Relevant Questions

asked 2021-03-02

Descibe in words the region of \(\mathbb{R^{3}}\) represented by the equation or inequality.
\(y = -2\)

asked 2021-01-31

(10%) In \(R^2\), there are two sets of coordinate systems, represented by two distinct bases: \((x_1, y_1)\) and \((x_2, y_2)\). If the equations of the same ellipse represented by the two distinct bases are described as follows, respectively: \(2(x_1)^2 -4(x_1)(y_1) + 5(y_1)^2 - 36 = 0\) and \((x_2)^2 + 6(y_2)^2 - 36 = 0.\) Find the transformation matrix between these two coordinate systems: \((x_1, y_1)\) and \((x_2, y_2)\).

asked 2021-01-31

The quadratic function \(\displaystyle{y}={a}{x}^{2}+{b}{x}+{c}\) whose graph passes through the points (1, 4), (2, 1) and (3, 4).

asked 2020-12-28

Assume that T is a linear transformation. Find the standard matrix of T.
\(\displaystyle{T}=\mathbb{R}^{{2}}\rightarrow\mathbb{R}^{{4}}\ {s}{u}{c}{h} \ {t}\hat \ {{T}}{\left({e}_{{1}}\right)}={\left({7},{1},{7},{1}\right)},{\quad\text{and}\quad}{T}{\left({e}_{{2}}\right)}={\left(-{8},{5},{0},{0}\right)},{w}{h}{e}{r}{e}{\ e}_{{1}}={\left({1},{0}\right)},{\quad\text{and}\quad}{e}_{{2}}={\left({0},{1}\right)}\).

asked 2020-10-21

To solve:
\(\displaystyle{\left(\begin{matrix}{x}-{2}{y}={2}\\{2}{x}+{3}{y}={11}\\{y}-{4}{z}=-{7}\end{matrix}\right)}\)

asked 2020-10-25

Let B and C be the following ordered bases of \(\displaystyle{R}^{{3}}:\)
\(B = (\begin{bmatrix}1 \\ 4 \\ -\frac{4}{3} \end{bmatrix},\begin{bmatrix}0 \\ 1 \\ 8 \end{bmatrix},\begin{bmatrix}1 \\ 1 \\ -2 \end{bmatrix})\)
\(C = (\begin{bmatrix}1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix}1 \\ 4 \\ -\frac{4}{3} \end{bmatrix}, \begin{bmatrix}0 \\ 1 \\ 8 \end{bmatrix})\) Find the change of coordinate matrix I_{CB}

asked 2021-02-14

All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(R^2, S = \left\{ \begin{bmatrix}1 \\ 0 \end{bmatrix}\begin{bmatrix} 0 \\1 \end{bmatrix} \right\}, v = \begin{bmatrix} 3 \\-2 \end{bmatrix} \)

asked 2021-01-02

Solve the given Alternate Coordinate Systems and give a correct answer 10) Convert the equation from Cartesian to polar coordinates solving for \(r^2\):
\(\frac{x^2}{9} - \frac{y^2}{16} = 25\)

asked 2021-02-21

All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(R^2, S = \left\{ \begin{bmatrix}1 \\ 0 \end{bmatrix}\begin{bmatrix} 0 \\1 \end{bmatrix} \right\}, v = \begin{bmatrix} 3 \\-2 \end{bmatrix}\)

asked 2020-12-30

Consider the elliptical-cylindrical coordinate system (eta, psi, z), defined by \(x = a \ \cos h \ \eta \cos \psi, y = a \sin h\ \eta \sin \psi; z = z,\ \eta \ GE \ 0, 0 \ LE \ \psi LE \ 2 \pi, \ z R. In \ PS6\)
it was shown that this is an orthogonal coordinate system with scale factors \(\displaystyle{h}_{{1}}={h}_{{2}}={a}{\left({{\text{cosh}}^{{2}}\ }\eta-{{\cos}^{{2}}\psi}\right)}^{{{\frac{{{1}}}{{{2}}}}}}.\)
Determine the dual bases \(\displaystyle{\left({E}{1},{E}{2},{E}{3}\right)},{\left(\eta,\eta\psi,{z}\right)}.{S}{h}{o}{w}{t}\hat{:}{f}={a}\frac{{1}}{{a}}\frac{{\left({{\text{cosh}}^{{2}}{e}}{a}{t}-{{\cos}^{{s}}\psi}\right)}^{{1}}}{{2}}{\left[\frac{{f}}{\eta}{e}{1}+\frac{{f}}{\psi}{e}{2}+\frac{{f}}{{z}}{e}{3},\frac{{f}}{{w}}{h}{e}{r}{e}{\left({e}{1},{e}{2},{e}{3}\right)}\right.}\) denotes the unit coordinate basis.

...