# Verify the identity:\frac{(\cot(\theta)+1)(\cot(\theta)+1)}{\csc\theta}=\csc(\theta)+2\cos(\theta)

Verify the identity:
$$\displaystyle{\frac{{{\left({\cot{{\left(\theta\right)}}}+{1}\right)}{\left({\cot{{\left(\theta\right)}}}+{1}\right)}}}{{{\csc{\theta}}}}}={\csc{{\left(\theta\right)}}}+{2}{\cos{{\left(\theta\right)}}}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

comentezq
Solution:
$$\displaystyle{\frac{{{\left({\cot{{\left(\theta\right)}}}+{1}\right)}{\left({\cot{{\left(\theta\right)}}}+{1}\right)}}}{{{\csc{\theta}}}}}={\csc{{\left(\theta\right)}}}+{2}{\cos{{\left(\theta\right)}}}$$
Taking LHS:
$$\displaystyle{\frac{{{\left({\cos{\theta}}+{1}\right)}^{{2}}}}{{{\csc{\theta}}}}}={\frac{{{{\cot}^{{2}}\theta}+{2}{\cos{\theta}}+{1}}}{{{\csc{\theta}}}}}$$
$$\displaystyle={\frac{{{{\csc}^{{2}}\theta}+{2}{\cos{\theta}}}}{{{\csc{\theta}}}}}$$
$$\displaystyle={\frac{{{{\csc}^{{2}}\theta}}}{{{\csc{\theta}}}}}+{\frac{{{2}{\cos{\theta}}}}{{{\csc{\theta}}}}}$$
$$\displaystyle={\csc{\theta}}+{\frac{{{2}{\cos{\theta}}}}{{{\sin{\theta}}\cdot{\frac{{{1}}}{{{\sin{\theta}}}}}}}}$$
$$\displaystyle={\csc{\theta}}+{2}{\cos{\theta}}={R}{H}{S}$$
LHS=RHS
Hence proved
###### Have a similar question?

• Questions are typically answered in as fast as 30 minutes