Percentage means out of 100. We can easily convert any fractional and decimal value into the percentage. The percentage is a very important topic for Bank PO, Bank Clerk, SSC, Railways etc.
The percentage is also a very important topic for Data interpretation, Simplification and for other Quants Arithmetic topics.

### Convert Decimal value into Percentage:

To convert decimal value into percentile value simply multiple the decimal numbers by 100 and it will be converted into percentile value.
Examples:1. Convert 0.65 into percentage0.65 $\setminus \times$ 100 = 65%
2. Convert 4.05 into percentage4.05 $\setminus \times$ 100 = 405%

### Convert fractional value into Percentage

To convert fractional value into percentile value multiply fractional by 100 and then convert it into lowest fractional form or decimal form.
Examples:1. Convert $\setminus \frac{3}{20}$ into percentage $\setminus \left(\setminus \frac{3}{20} \setminus\right) \setminus \times$ 100 = ( 3 $\setminus \times$ 5) % = 15%
2. Convert $\setminus \frac{8}{25}$ into percentage $\setminus \left(\setminus \frac{8}{25} \setminus\right) \setminus \times$ 100 = (8 $\setminus \times$ 4) % = 32 %

### Basic conversion of fraction to percentage to remember:

$\setminus \frac{1}{1}$ = 100 %

$\setminus \frac{1}{2}$ = 50 %

$\setminus \frac{1}{3}$ = 33.33 % = 33

$\setminus \frac{1}{4}$ = 25 %

$\setminus \frac{1}{5}$ = 20 %

$\setminus \frac{1}{6}$ = 16.67 %

$\setminus \frac{1}{7}$ = 14.28 %

$\setminus \frac{1}{8}$ = 12.5 %

$\setminus \frac{1}{9}$ = 11.11 % = 11

$\setminus \frac{1}{10}$ = 10 %

$\setminus \frac{1}{11}$ = 9.09 %

$\setminus \frac{1}{12}$ = 8.33 %

$\setminus \frac{1}{13}$ = 7.69 %

$\setminus \frac{1}{14}$ = 7.14 %

$\setminus \frac{1}{15}$ = 6.67 %

$\setminus \frac{1}{16}$ = 6.25 %

$\setminus \frac{1}{17}$ = 5.88 %

$\setminus \frac{1}{18}$ = 5.55 %

$\setminus \frac{1}{19}$ = 5.26 %

$\setminus \frac{1}{20}$ = 5 %

If we remember the above easy conversions then we can convert some more fractions into percentage easily
Example:We remember than percentage of (1/16) is 6.25%
Then we can easily find conversions of 2/16, 3/16, 4/16, 5/16, ……… 16/16 as
$\setminus \left(\setminus \frac{5}{16} \setminus\right)$ = 5 $\setminus \times \setminus \left(\setminus \frac{1}{16} \setminus\right)$ = 5 $\setminus \times$ 6.25 = 31.25 %
$\setminus \left(\setminus \frac{7}{16} \setminus\right)$ = 7 $\setminus \times \setminus \left(\setminus \frac{1}{16} \setminus\right)$ = 7 $\setminus \times$ 6.25 = 43.75 %
$\setminus \left(\setminus \frac{13}{16} \setminus\right)$ = 13 $\setminus \times \setminus \left(\setminus \frac{1}{16} \setminus\right)$ = 13 $\setminus \times$ 6.25 = 81.25 %
$\setminus \left(\setminus \frac{1}{8} \setminus\right)$ = 12.5 %

So we can find easily percentage for 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 8/82/8 = (2 $\setminus \times$ 12.5) % = 25 %
$\setminus \frac{3}{8}$ = (3 $\setminus \times$ 12.5) % = 37.5 %
$\setminus \frac{4}{8}$ = (4 $\setminus \times$ 12.5) % = 50 %
$\setminus \frac{5}{8}$ = (5 $\setminus \times$ 12.5) % = 62.5 %
$\setminus \frac{6}{8}$ = (6 $\setminus \times$ 12.5) % = 75 %
$\setminus \frac{7}{8}$ = (7 $\setminus \times$ 12.5) % = 87.5 %
$\setminus \frac{8}{8}$ = (8 $\setminus \times$ 12.5) % = 100 %

## Percentage of Some Difficult Fractions

If numerator < denominator, the percentage will always be less than 100%
If numerator > denominator, the percentage will always be greater than 100%

### 1. $\setminus \frac{512}{600}$

#### Step 1:

Take 10% of the denominator and find the closest multiple to the numerator and less than numerator
i.e. 10 % of 600 = 60
60 $\setminus \times$ 8 = 480
Hence the percentage will be greater than 80% and less than 90 %

### Step 2:

Subtract the highest multiple (480) from numerator (512)
512 – 480 = 32

#### Step 3:

Take 1% of the denominator and find the closest multiple to the subtracted result of Step 2 (i.e. 32)
i.e. 1 % of 600 = 6
6 $\setminus \times$ 5 = 30
Hence the percentage will be greater than 85 % and less than 86 %

#### Step 4:

Subtract the multiple (30) from resultant (32)
i.e. 32 – 30 = 2

#### Step 5:

Take 0.1% of the denominator and find the closest multiple to the resultant of Step 4
i.e. 0.1 % of 600 = 0.6
0.6 $\setminus \times$ 3 = 1.8
Hence the percentage will be greater than 85.3 % and less than 85.4 %
Keep repeating the steps if further required

### 2.  $\setminus \frac{640}{560}$

Numerator > Denominator then percentage greater than 100%

#### Step 1:

10 % of 560 = 56
56 $\setminus \times$ 11 = 616
Hence percentage is greater than 110% and less than 120%

640 – 616 = 24

#### Step 3:

1 % of 560 = 5.6
5.6 $\setminus \times$ 4 = 22.4
Hence percentage is greater than 114% and less than 115%

24 – 22.4 = 1.6

#### Step 5:

0.1% of 560 = 0.56
0.56 $\setminus \times$ 2 = 1.12
Hence percentage is little bit greater than 114.2%
We can solve any fraction through this process

TRY OUT SOME EXAMPLES
1214/1560, 295/340 , 783/260 , 951/800

Suggested Books: View here
Percentages Concepts and Formulae Reviewed by Jasleen Behl on Friday, April 04, 2014 Rating: 5