\(\displaystyle{g}'{\left({x}\right)}={\frac{{{4}{x}}}{{{2}{x}^{{{2}}}+{1}}}}\)

Question

asked 2021-06-01

Find derivatives for the functions. Assume a, b, c, and k are constants.

\(\displaystyle{y}={x}^{{{2}}}{\ln{{\left({2}{x}+{1}\right)}}}\)

\(\displaystyle{y}={x}^{{{2}}}{\ln{{\left({2}{x}+{1}\right)}}}\)

asked 2021-05-11

Find the derivatives of the functions. \(\displaystyle{g{{\left({x}\right)}}}={\ln{{\left({x}-{3.1}{x}^{{-{1}}}\right)}}}\)

asked 2021-06-05

Find the derivatives of the functions. \(\displaystyle{g{{\left({x}\right)}}}={\ln}{\left|{x}^{{{2}}}-{x}\right|}\)

asked 2021-06-07

Find the derivatives of the functions. \(\displaystyle{h}{\left({x}\right)}={\ln{{\left[{\left(-{2}{x}+{1}\right)}{\left({x}+{1}\right)}\right]}}}\)