\(\frac{dy}{dt}=\frac{5(\ln 2)2^{\sqrt{t-2}}}{2\sqrt{t-2}}\)

asked 2021-01-05

\(\displaystyle{q}{\left({x}\right)}={x}^{{2}}+{7}\)

\(r(x)=\sqrt{x+8}\)

Find the following.

\(\displaystyle{q}\cdot{r}{\left({1}\right)}=?\)

\(\displaystyle{\left({r}\cdot{q}\right)}{\left({1}\right)}=?\)

asked 2021-03-05

Find derivatives of the functions defined as follows. \(s=5\cdot2^{\sqrt{t-2}}\)

asked 2021-02-26

\(\displaystyle{g{{\left({x}\right)}}}=\sqrt{{{5}{x}^{{2}}}}\)

\(\displaystyle{x}{\left({w}\right)}={2}{e}^{{w}}\)

\(g(x(ww))=?\)

Evalute the composite function at 1.

\(g(x(1))=?\)

asked 2020-12-21

Find derivatives of the functions defined as follows. \(s=2 \cdot 3^{\sqrt{t}}\)

asked 2021-06-24

Find derivatives of the functions defined as follows.

\(\displaystyle{y}={3}\dot{{\lbrace}}{4}^{{{x}^{{{2}}}+{2}}}\)

\(\displaystyle{y}={3}\dot{{\lbrace}}{4}^{{{x}^{{{2}}}+{2}}}\)

asked 2021-06-13

asked 2021-02-25

\(f(x) = 3x + 1\)

\(g(x) = −x\)

asked 2020-11-24

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{5}}{{{x}+{9}}}\)

\(g(x)=x+6\)

asked 2021-02-24

For \(f(x)=6/x\) and \(g(x)=6/x\), find the following functions.

a) \((f \cdot g)(x)\)

b) \((g \cdot f)(x)\)

c) \((f \cdot g)(7)\)

d) \((g \cdot f)(7)\)

asked 2021-06-20

\(\displaystyle{g{{\left({x}\right)}}}={2}\sqrt{{{3}}}-{x},{\left(-\infty,{3}\right]}\)