Vector Cross ProductLet vectors A=(1,0,-3), B =(-2,5,1), and C =(3,1,1).

EunoR 2021-05-27 Answered

Vector Cross Product
Let vectors \(A=(1,0,-3), B =(-2,5,1),\ and\ C =(3,1,1)\). Calculate the following, expressing your answers as ordered triples (three comma-separated numbers).
(C) \((2\bar B)(3\bar C)\)
(D) \((\bar B)(\bar C)\)
(E) \(\overrightarrow A(\overrightarrow B \times \overrightarrow C)\)
(F)If \(\bar v_1 \text{ and } \bar v_2\) are perpendicular, \(|\bar v_1 \times \bar v_2|\)
(G) If \(\bar v_1 \text{ and } \bar v_2\) are parallel, \(|\bar v_1 \times \bar v_2|\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

au4gsf
Answered 2021-05-28 Author has 19555 answers
image
Not exactly what you’re looking for?
Ask My Question
4
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-01-28

Given the vector \(r(t) = { \cos T, \sin T, \ln ( \cos T) }\) and point (1, 0, 0) find vectors T, N and B at that point.

Vector T is the unit tangent vector, so the derivative r(t) is needed.

Vector N is the normal unit vector, and the equation for it uses the derivative of T(t). \(\)

The B vector is the binormal vector, which is a crossproduct of T and N.

asked 2021-03-02

Let u,\(v_1\) and \(v_2\) be vectors in \(R^3\), and let \(c_1\) and \(c_2\) be scalars. If u is orthogonal to both \(v_1\) and \(v_2\), prove that u is orthogonal to the vector \(c_1v_1+c_2v_2\).

asked 2021-05-03

Vectors u and v are orthogonal. If \(u=\langle3, 1+b\rangle\) and \(v=\langle5, 1-b\rangle\) find all possible values for b.

asked 2021-03-08

The position vector \(\displaystyle{r}{\left({t}\right)}={\left\langle{\ln}\ {t},\frac{{1}}{{t}^{{2}}},{t}^{{4}}\right\rangle}\) describes the path of an object moving in space.
(a) Find the velocity vector, speed, and acceleration vector of the object.
(b) Evaluate the velocity vector and acceleration vector of the object at the given value of \(\displaystyle{t}=\sqrt{{3}}\)

asked 2021-03-02

Let U,V be subspaces of Rn. Suppose that \(U\bot V.\) Prove that \(\{u,v\}\) is linearly independent for any nonzero vectors \(u\in U,\ v\in V.\)

asked 2020-11-30

Consider \(\displaystyle{V}={\cos{{\left({x}\right)}}},{\sin{{\left({x}\right)}}}\) a subspace of the vector space of continuous functions and a linear transformation \(\displaystyle{T}:{V}\rightarrow{V}\) where \(\displaystyle{T}{\left({f}\right)}={f{{\left({0}\right)}}}\times{\cos{{\left({x}\right)}}}−{f{{\left(π{2}\right)}}}\times{\sin{{\left({x}\right)}}}.\)

Find the matrix of T with respect to the basis \(\displaystyle{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}},{\cos{{\left({x}\right)}}}−{\sin{{\left({x}\right)}}}\) and determine if T is an isomorphism.

asked 2021-05-01

Identify the surface with the given vector equation. \(r(s,t)=\)\((s,t,t^2-s^2)\)
eliptic cylinder
circular paraboloid
hyperbolic paraboloid
plane
circular cylinder

...