# Solve frac{(sin theta+cos theta)}{cos theta}+frac{(sin theta-cos theta)}{cos theta}

Solve $\frac{\left(\mathrm{sin}\theta +\mathrm{cos}\theta \right)}{\mathrm{cos}\theta }+\frac{\left(\mathrm{sin}\theta -\mathrm{cos}\theta \right)}{\mathrm{cos}\theta }$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Layton
$\frac{\mathrm{sin}\left(\theta \right)+\mathrm{cos}\left(\theta \right)}{\mathrm{cos}\left(\theta \right)}+\frac{\mathrm{sin}\left(\theta \right)-\mathrm{cos}\left(\theta \right)}{\mathrm{cos}\left(\theta \right)}=$
Apply rule $\frac{a}{c}±\frac{b}{c}=\frac{a±b}{c}$
$=\left(\mathrm{sin}\left(\theta \right)+\mathrm{cos}\left(\theta \right)+\mathrm{sin}\left(\theta \right)-\frac{\mathrm{cos}\left(\theta \right)}{\mathrm{cos}\left(\theta \right)}$
$=\frac{2\mathrm{sin}\left(\theta \right)}{\mathrm{cos}\left(\theta \right)}$
Use the following identity: $\mathrm{sin}\left(x\right)\mathrm{cos}\left(x\right)=\mathrm{tan}\left(x\right)$
$=2\mathrm{tan}\left(\theta \right)$