poprskanvxcl

2023-02-19

A wave having a wavelength of 4.0 meters and an amplitude of 25 meters travels a distance of 24 meters in 8.0 seconds. What is the frequency and the period of the wave?

Zachariah Patel

Beginner2023-02-20Added 7 answers

Given:

$\lambda =4.0m$

$Amplitude=25m$

$d=24m$

$s=8.0s$

Required:

$f=?$

$T=?$

Analysis:

$v=\lambda f$

$f=\frac{N}{t}$

$T=\frac{1}{f}$

$v=\frac{d}{t}$

Solve:

$v=\frac{d}{t}=\frac{24}{8.0}\to v=3.0\frac{m}{s}$

$v=\lambda f\to f=\frac{v}{\lambda}=\frac{3.0}{4.0}\to f=0.75Hz$

$T=\frac{1}{f}=\frac{1}{0.75}\to T=1.33s$

$\lambda =4.0m$

$Amplitude=25m$

$d=24m$

$s=8.0s$

Required:

$f=?$

$T=?$

Analysis:

$v=\lambda f$

$f=\frac{N}{t}$

$T=\frac{1}{f}$

$v=\frac{d}{t}$

Solve:

$v=\frac{d}{t}=\frac{24}{8.0}\to v=3.0\frac{m}{s}$

$v=\lambda f\to f=\frac{v}{\lambda}=\frac{3.0}{4.0}\to f=0.75Hz$

$T=\frac{1}{f}=\frac{1}{0.75}\to T=1.33s$