tisanurnr9c

2023-02-21

If the point (3/5,4/5) corresponds to an angle in the unit circle, what is csc x?

Rigoberto Gordon

Beginner2023-02-22Added 7 answers

We have $M(\frac{3}{5},\frac{4}{5})$

$\mathrm{tan}x=\frac{y}{x}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}$, $x={53}^{\circ}13$

$\mathrm{sin}x=\mathrm{sin}53.13=0.8$

$\mathrm{csc}x=\frac{1}{\mathrm{sin}x}=\frac{1}{0.8}=1.25$

$\mathrm{tan}x=\frac{y}{x}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}$, $x={53}^{\circ}13$

$\mathrm{sin}x=\mathrm{sin}53.13=0.8$

$\mathrm{csc}x=\frac{1}{\mathrm{sin}x}=\frac{1}{0.8}=1.25$