 # Series math questions and answers

Recent questions in Series Armorikam 2021-08-18 Answered

### Name the series: a) $$\displaystyle{\sum_{{{n}={0}}}^{\infty}}\frac{{{f}^{{n}}\times{a}}}{{{n}!}}\times{\left({x}–{a}\right)}^{{n}}$$ b) $$\displaystyle{\sum_{{{n}={0}}}^{\infty}}\frac{{{f}^{{n}}\times{0}}}{{{n}!}}\times{x}^{{n}}$$ vazelinahS 2021-08-17 Answered

### The 7th term of an arithmetic sequence is 21, and the tenth term is 126. Find the 1st term? hexacordoK 2021-08-16 Answered

### Which of the following series are geometric? Which are power ones? a) $$\displaystyle{1}+\frac{{x}}{{2}}+\frac{{x}^{{2}}}{{4}}+\frac{{x}^{{3}}}{{8}}+\frac{{x}^{{4}}}{{16}}+\ldots$$ b) $$\displaystyle{1}+{1.1}+{1.21}+{1.331}+{1.4641}+{1.6105}+\ldots$$ c) $$\displaystyle{\left(\frac{{1}}{{3}}\right)}^{{2}}+{\left(\frac{{1}}{{3}}\right)}^{{4}}+{\left(\frac{{1}}{{3}}\right)}^{{6}}+{\left(\frac{{1}}{{3}}\right)}^{{8}}+\ldots$$ d) $$\displaystyle{1}+{x}+\frac{{x}^{{2}}}{{{2}!}}+\frac{{x}^{{3}}}{{{3}!}}+\frac{{x}^{{4}}}{{{4}!}}+\ldots$$ e) $$\displaystyle{1}+\frac{{1}}{{2}}+\frac{{1}}{{3}}+\frac{{1}}{{4}}+\frac{{1}}{{5}}+\ldots$$ f) $$\displaystyle\frac{{1}}{{x}^{{2}}}+\frac{{1}}{{x}}+{1}+{x}+{x}^{{2}}+{x}^{{3}}+{x}^{{4}}+\ldots$$ ringearV 2021-08-14 Answered

### The following series $$\displaystyle{\sum_{{{k}={0}}}^{\infty}}\frac{{1}}{{k}^{{5}}}$$ is: a) alternating series b) convergent p-series c) divergent p-series d) geometric series Joni Kenny 2021-08-13 Answered

### Justify if the series is convergent: $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}{e}^{{-{n}}}$$ Amari Flowers 2021-08-13 Answered

### Consider two series $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{2}}\pi{n}{Z}{\quad\text{and}\quad}{\sum_{{{n}={0}}}^{\infty}}\frac{{1}}{\pi^{{2}}}{n}$$. Which of them converges? slaggingV 2021-08-12 Answered

### Tell whether the series converges or diverges. $$\displaystyle{\sum_{{{k}={1}}}^{\infty}}\frac{{5}}{{\left({k}+{4}\right)}^{{4}}}$$ Ernstfalld 2021-08-12 Answered

### Determine whether the following series converges or diverges: $$\displaystyle{\sum_{{{k}={1}}}^{\infty}}\frac{{3}}{{\left({k}+{4}\right)}^{{3}}}$$ CoormaBak9 2021-08-11 Answered

### Write the first five terms of the arithmetic sequence. $$\displaystyle{a}_{{1}}={5},{d}={6}$$ Harlen Pritchard 2021-06-13 Answered

### Starting with the geometric series $$\sum_{n=0}^\infty x^n$$, find the sum of the series $$\sum_{n=1}^\infty nx^{n-1},\ |x|<1$$ Emily-Jane Bray 2021-06-12 Answered

### Determine whether the geometric series is convergent or divergent. $$10-4+1.6-0.64+...$$ If it convergent, find the sum. amanf 2021-06-03 Answered

### Missing number in the series $$9,\ ?,\ 6561,\ 43046721$$ is: $$81\ 25\ 62\ 31\ 18$$ tinfoQ 2021-06-02 Answered

### Find the value of x for which the series converges $$\sum_{n=1}^\infty(x+2)^n$$ Find the sum of the series for those values of x. DofotheroU 2021-05-23 Answered

### Find the sim of each of the following series. 1) $$\sum_{n=1}^\infty nx^n,\ |x|<1$$ 2) $$\sum_{n=1}^\infty \frac{n}{8^n}$$ Nannie Mack 2021-05-18 Answered

### Let P(k) be a statement that $$\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{k\cdot(k+1)}=$$ for: The basis step to prove $$P(k)$$ is that at $$k = 1, ?$$ is true. for:Show that $$P(1)$$ is true by completing the basis step proof. Left side of $$P(k)$$ and Right side of $$P(k)$$ for: Identify the inductive hypothesis used to prove $$P(k)$$. for: Identify the inductive step used to prove $$P(k+1).$$ emancipezN 2021-05-12 Answered

### Determine whether the series is convergent or divergent. $$1+\frac{1}{2\sqrt2}+\frac{1}{3\sqrt3}+\frac{1}{4\sqrt4}+\frac{1}{5\sqrt5}+\dots$$ Albarellak 2021-03-09 Answered

### Use the formula for the sum of a geometric series to find the sum, or state that the series diverges. $$\displaystyle{\frac{{{25}}}{{{9}}}}+{\frac{{{5}}}{{{3}}}}+{1}+{\frac{{{3}}}{{{5}}}}+{\frac{{{9}}}{{{25}}}}+{\frac{{{27}}}{{{125}}}}+\ldots$$ lwfrgin 2021-03-09 Answered

### Write the series and find the sum of the series of sigma notation. $$\displaystyle{\sum_{{{i}={0}}}^{{6}}}{\frac{{{i}}}{{{i}-{1}}}}$$ postillan4 2021-03-08 Answered

### Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series. $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}{\frac{{{1}}}{{{n}+{3}}}}$$ sjeikdom0 2021-03-07 Answered

### Write out the first eight terms of each series to show how the series starts. Then find the sum of the series or show that it diverges. $$\sum_{n=2}^\infty\frac{1}{4^n}$$

Series math problems relate to the precalculus stage of mathematical studies that are met both by high school students and college learners dealing with analysis. The questions that are brought up by this specific approach will include solving series equations that represent the sum of a sequence to a certain number of terms. You can take a look at various series math examples that will help you approach series math questions that may relate either to statistical calculations or engineering equations that are mostly used in engineering and data programming.
...