 Recent questions in Polynomials boitshupoO 2021-09-15 Answered

### Simplify each rational expression. You will need to use factoring by grouping. $$\displaystyle{\frac{{{x}^{{2}}-{2}{x}+{a}{x}-{2}{a}}}{{{x}^{{2}}-{2}{x}+{3}{a}{x}-{6}{a}}}}$$ foass77W 2021-09-15 Answered

### Find f+g, f-g, fg and $$\displaystyle{\frac{{{f}}}{{{g}}}}$$. Then determine the domain for each function. $$\displaystyle{f{{\left({x}\right)}}}={3}{x}^{{2}}-{14}{x}+{16},\ {g{{\left({x}\right)}}}={x}-{2}$$ Anonym 2021-09-15 Answered

### Multiply the algebraic expressions using the FOIL method, and simplify. $$\displaystyle{\left({3}{t}-{2}\right)}{\left({7}{t}-{4}\right)}$$ Maiclubk 2021-09-15 Answered

### Find all the real and complex zeros of the following polynomials. $$\displaystyle{f{{\left({x}\right)}}}={x}^{{4}}-{4}{x}^{{3}}+{7}^{{2}}-{16}{x}+{12}$$ permaneceerc 2021-09-15 Answered

### Find the roots of the quadratic polynomials: $$\displaystyle{f{{\left({x}\right)}}}={4}{x}^{{2}}−{3}{x}−{1}$$ vestirme4 2021-09-15 Answered

### Express the polynomial f (x) in terms of elementary symmetric polynomials. $$x_1^3+x_2^3+x_3^3-x_1x_2x_3$$ ruigE 2021-09-15 Answered

### Multiply the polynomials $$\displaystyle{\left({x}-{1}\right)}{\left({x}^{{4}}+{x}^{{3}}+{x}^{{2}}+{x}+{1}\right)}$$ using a table. Generalize the pattern that emerges by writing down an identity for $$\displaystyle{\left({x}-{1}\right)}{\left({x}^{{n}}+{x}^{{{n}-{1}}}+\ldots+{x}^{{2}}+{x}+{1}\right)}$$ for n a positive integer. Jaya Legge 2021-09-15 Answered

### Determine for which polynomials (x+2) is a factor. Explain your answer. $$\displaystyle{P}{\left({x}\right)}={x}^{{4}}-{3}{x}^{{3}}-{16}{x}-{12}$$ $$\displaystyle{Q}{\left({x}\right)}={x}^{{3}}-{3}{x}^{{2}}-{16}{x}-{12}$$ Rivka Thorpe 2021-09-15 Answered

### Multiply the polynomials using the FOIL method. Express your answer as a single polynomial in standard form. (3x+1)(2x+1) remolatg 2021-09-15 Answered

### Factor the given equation is $$\displaystyle{2}{p}^{{2}}+{4}{p}-{6}={0}$$ Brittney Lord 2021-09-15 Answered

### Add the given polynomials. $$\displaystyle{3}{x}^{{2}}-{5}{x}-{1}$$ and $$\displaystyle-{4}{x}^{{2}}+{7}{x}-{1}$$ e1s2kat26 2021-09-14 Answered

### Factor each polynomial completely. If the polynomial cannot be factored, say it is prime. $$\displaystyle{9}{x}^{{2}}-{24}{x}+{16}$$ mattgondek4 2021-09-14 Answered

### If B is the standart basis of the space $$\displaystyle{P}_{{3}}$$ of polynomials, then let $$\displaystyle{B}={1},{t},{t}^{{2}},{t}^{{3}}$$. Use coordinate vectors to test the linear independence of the set of polynomials below. Explain you work. $$\displaystyle{1}+{3}{t}^{{2}}-{t}^{{3}},{t}+{6}{t}^{{3}},{1}+{t}+{3}{t}^{{2}}$$ iohanetc 2021-09-14 Answered

### Factor the polynomial. $$\displaystyle{12}{x}^{{2}}-{x}-{6}$$ Tyra 2021-09-14 Answered

### Factor each of the following polynomials completely. Indicate any that are not factorable using integers. $$\displaystyle{3}{x}^{{4}}-{48}$$ Annette Arroyo 2021-09-14 Answered

### Consider the following polynomials over $$\displaystyle{Z}_{{8}}$$ where a is written for [a] in $$\displaystyle{Z}_{{8}}$$: $$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{3}}+{7}{x}+{4},{g{{\left({x}\right)}}}={4}{x}^{{2}}+{4}{x}+{6},{h}{\left({x}\right)}={6}{x}^{{2}}+{3}$$ Find each of the following polynomials with all coefficients in $$\displaystyle{Z}_{{8}}$$ $$\displaystyle{g{{\left({x}\right)}}}+{h}{\left({x}\right)}$$ amanf 2021-09-13 Answered

### Find a linear differential operator that annihilates the given function. $$\displaystyle{f{{\left({x}\right)}}}={3}{x}^{{2}}-{x}{\sin{{3}}}{x}+{x}^{{2}}{e}^{{-{x}}}{\cos{{4}}}{x}$$ arenceabigns 2021-09-13 Answered

### Use the Binomial Theorem to expand the binomial, $$\displaystyle{\left({3}{x}+{y}\right)}^{{3}}$$ and express the result in simplified form. rocedwrp 2021-09-13 Answered

### Add polynomials: $$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{3}}+{5}{x}^{{2}}-{3}{x}+{4}$$ $$\displaystyle{g{{\left({x}\right)}}}={x}^{{5}}-{2}{x}^{{2}}-{1}$$ $$\displaystyle{f{{\left({x}\right)}}}+{g{{\left({x}\right)}}}=$$ Kye 2021-09-13 Answered

...