 # Calculus 2: Series questions and answers

Recent questions in Series clasicaacyx 2022-09-17

### Two number have a sum of 124 and a difference of 46. Find the humbers Kailey Vargas 2022-09-09

### Find the sum of the first 85 terms of the arithmetic series.$33+40+47+54+...$ Zackary Duffy 2022-09-06

### The coefficient of ${x}^{6}$ in the Maclaurin series expansion of $f\left(x\right)=\left(1+4{x}^{2}{\right)}^{-\frac{2}{5}}$ is? reinzogoq 2022-09-03

### Find series:$\sum _{k=1}^{n}\left(3+4k{\right)}^{2}\phantom{\rule{0ex}{0ex}}$ imire37 2022-08-05

### There are various types of numbers, including the following types: Odd Even Whole Natural Integer Rational Irrational Real a) Order these types in terms of how one type can be included in another. You may draw a diagram, graph or table to explain the relationships. b) Give at least one example of each type of number. The example should be specific. Choose an example that, ideally, could not be assigned to any more limited or restricted type. c) Give at least two examples of how operations (such as addition) on numbers belonging to one type can produce a result that belongs to another type. hesax90295 2022-08-03

### Which statement is symmetric?Hint: Reflexive Property: a = aSymmetric Property: If a = b, then b = aTransitive Property: If a b and b = c, then a = cDistributive Property: a(b+c) = ab + acA)24=24B)4(x+2)=4x+8C)13+7=7+13 Flambergru 2022-08-02

### The sum to infinity of a G.P series is R. The sum to infinity of the squares of the terms is 2R. The sum to infinity of the cubes of the terms is (64/13)R. Find (i) the value of R. (ii) the first term of the first original series. abrham enyew 2022-07-29 abrham enyew 2022-07-29 vangstosiis 2022-07-29

### Find the sum of the series.$\sum _{n=1}^{\mathrm{\infty }}\frac{7}{{4}^{n}}$ skynugurq7 2022-07-16

### $\frac{1}{2\cdot 4}+\frac{1\cdot 3}{2\cdot 4\cdot 6}+\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6\cdot 8}+\frac{1\cdot 3\cdot 5\cdot 7}{2\cdot 4\cdot 6\cdot 8\cdot 10}+\cdots$is equal to? vasorasy8 2022-07-14

### How do I evaluate $\sum _{n=1}^{\mathrm{\infty }}\frac{\left(-1{\right)}^{n+1}{H}_{n}}{2n+1}?$ Esmeralda Lane 2022-07-14

### Determine the convergence of $\sum _{n=2}^{\mathrm{\infty }}\mathrm{sin}\left(n\pi +\frac{1}{\mathrm{ln}n}\right)$ auto23652im 2022-07-14

### The sequence $\left(b{\right)}_{n\ge 0}$ shall satisfy${b}_{n}=\sum _{k=0}^{n}\left(\genfrac{}{}{0}{}{n}{k}\right){a}_{k}$ Holetaug 2022-07-14

### Why the limit of the following sequence is like this:$\frac{2\sqrt[n]{n!}}{n}=\frac{2}{e}$ babyagelesszj 2022-07-13

### Having the following series:$-\frac{1}{2}+\frac{1}{6}-\frac{1}{10}+\frac{1}{14}-\frac{1}{18}+\dots$What is the easiest approach to find a general formula for this series? Joel French 2022-07-13

### Convergence of $\sum \frac{{a}_{n}}{\sqrt{n}}$ given that $\sum {a}_{n}^{2}$ converges Dayanara Terry 2022-07-12

### Proving convergence of:$\sum _{n=0}^{\mathrm{\infty }}\frac{\mathrm{cos}\left(n\pi \right)}{3n!+1}$ Waldronjw 2022-07-12
### How does one show $S\sim \frac{{N}^{2}}{4}\left(2\mathrm{ln}\left(N\right)-1\right)$ ? hornejada1c 2022-07-11