# Get help with Calculus 1

Recent questions in Calculus 1

### Compute the first-order partial derivatives. $$\displaystyle{z}={x}^{{{2}}}+{y}^{{{2}}}$$

Miguel Reynolds 2022-01-15 Answered

### Derivatives of constant multiples of functions Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{t}\right.}}}}{\left({\frac{{{3}}}{{{8}}}}\sqrt{{{t}}}\right)}$$

Victor Wall 2022-01-15 Answered

### Calculating derivatives Find the derivative of the following functions. $$\displaystyle{y}={{\cos}^{{{2}}}{x}}$$

David Lewis 2022-01-15 Answered

### Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({e}^{{-{10}{x}^{{{2}}}}}\right)}$$

Gregory Jones 2022-01-15 Answered

### Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({x}{\ln{{x}}}^{{{3}}}\right)}$$

Joseph Krupa 2022-01-15 Answered

### Find both first partial derivatives. $$\displaystyle{z}={6}{x}−{x}^{{{2}}}{y}+{8}{y}^{{{2}}}$$

Daniell Phillips 2022-01-15 Answered

### Justify that you have found the requested point by analyzing an appropriate derivative. $$\displaystyle{x}={t}+{1}$$ $$\displaystyle{y}={t}^{{{2}}}+{t}$$ $$\displaystyle-{2}\leq{t}\leq{2}$$ Lowet point.

Daniell Phillips 2022-01-15 Answered

### Higher-Order Derivatives $$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{{4}}}-{3}{x}^{{{3}}}+{2}{x}^{{{2}}}+{x}+{4}$$ find $$\displaystyle{{f}^{{{10}}}{\left({x}\right)}}=$$

Bobbie Comstock 2022-01-14 Answered

### Derivatives involving ln x Find the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({\ln{{\left({\frac{{{x}+{1}}}{{{x}-{1}}}}\right)}}}\right)}$$

Tiffany Russell 2022-01-14 Answered

### Derivatives Evaluate the following derivatives. $$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({x}^{{{e}}}+{e}^{{{x}}}\right)}$$

Stacie Worsley 2022-01-14 Answered