# Calculus 1: Integrals questions and answers

Recent questions in Integrals
Hailie Blevins 2022-06-22

### Calculate the flux of the vector field $F\left(x,y,z\right)=\left(3{z}^{2}y,2{x}^{2}y,2{y}^{2}z\right)$

juanberrio8a 2022-06-21

### The problem is the integral of$\int \frac{-8x}{{x}^{4}-{a}^{4}}\phantom{\rule{thinmathspace}{0ex}}dx$

Finley Mckinney 2022-06-19

### Evaluate${\int }_{\mathrm{ln}2}^{\mathrm{ln}4}\frac{{e}^{-x}}{\sqrt{1-{e}^{-2x}}}dx$

Erin Lozano 2022-06-19

### Find ${\int }_{-1}^{2}\left(5{x}^{3}+7{x}^{2}-9x+4\right)dx$ by Riemann sums

misurrosne 2022-06-17

### How do you evaluate:

sedeln5w 2022-06-16

### Integration by substitution, ${\int }_{1}^{a}f\left({x}^{s}\right)dx={\int }_{1}^{{a}^{s}}f\left(x\right)\frac{1}{s{x}^{1-1/s}}dx$

Roland Manning 2022-06-16

### Determine: ${\int }_{-1}^{1}\frac{1-x}{1+x}dx$

Mohamed Mooney 2022-06-15

### Using partial integral to show ${\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}\frac{{x}^{2}{e}^{x}}{\left(1+{e}^{x}{\right)}^{2}}dx=4{\int }_{0}^{\mathrm{\infty }}\frac{x{e}^{-x}}{\left(1+{e}^{-x}\right)}dx$

shmilybaby4i 2022-06-14

### Integrate using integration by parts $\int {e}^{-\frac{x}{2}}\frac{\sqrt{1-\mathrm{sin}x}}{1+\mathrm{cos}x}dx$

anginih86 2022-06-13

### How does one go from this: $\int \frac{{l}_{0}\left(1-\xi /{x}_{1}\right)}{\sqrt{{\kappa }_{0}^{2}\left(1-{x}_{0}/{x}_{1}{\right)}^{2}-{l}_{0}^{2}\left(1-\xi /{x}_{1}{\right)}^{2}}}d\xi$

ht1o4qgqdy 2022-06-04

### Double angle formulae for $\mathrm{sin}2\theta$ and $\mathrm{cos}2\theta$ in tangent form?

ht1o4qgqdy 2022-06-04

### Double angle formulae for $\mathrm{sin}2\theta$ and $\mathrm{cos}2\theta$ in tangent form?

Kallie Arroyo 2022-06-01

### Using the Cauchy integral formula show that${\oint }_{|z|=2}\frac{{e}^{z}dz}{\left(z-1{\right)}^{2}\left(z-3\right)}=-\frac{3}{2}je\pi .$

Antoine Hill 2022-05-29

### How do you evaluate ${\int }_{0}^{\mathrm{\infty }}xf\left(x\right)\text{d}x$, where $f\left(x\right)=x{e}^{-{x}^{2}}$ ?

Jorge Lawson 2022-05-29

### How to evaluate the integral ${\int }_{a}^{\mathrm{\infty }}x\left(1-\mathrm{exp}\left(-{x}^{-a}\right)\right)dx\phantom{\rule{thinmathspace}{0ex}}$

Jaycee Mathis 2022-05-28

### I have a task to solve following integral:$I\left(a\right)={\int }_{0}^{\mathrm{\infty }}\frac{{e}^{-ax}}{1+{x}^{2}}dx$

Brice Colon 2022-05-23