If \(\displaystyle{P}{\left({0}{<}{z}{<}{k}\right)}={.3212},\) find and solve k.

Table shows the number of cellular phone subscribers in the United States and their average monthly bill in the years from 2000 to 2010. \(\begin{matrix} \text{Year} & \text{Subscribers} & \text{Average Local}\\ \text{ } & \text{(millions)} & \text{Monthly Bill ()}\\ \text{2000} & \text{109.5} & \text{45.27}\\ \text{2001} & \text{128.4} & \text{47.37}\\ \text{2002} & \text{140.8} & \text{48.40}\\ \text{2003} & \text{158.7} & \text{49.91}\\ \text{2004} & \text{182.1} & \text{50.64}\\ \text{2005} & \text{207.9} & \text{49.98}\\ \text{2006} & \text{233.0} & \text{50.56}\\ \text{2007} & \text{255.4} & \text{49.79}\\ \text{2008} & \text{262.7} & \text{50.07}\\ \text{2009} & \text{276.6} & \text{48.16}\\ \text{2010} & \text{300.5} & \text{47.21}\\ \end{matrix}\) In 1995 There were 33.8 million subscribers with an average local monthly bill of $51.00. Add these points to the scatter plots. Do the 1995 points match well with the trends in the rest of the data?

Table shows the number of cellular phone subscribers in the United States and their average monthly bill in the years from 2000 to 2010. \(\begin{matrix}\text{Year}&\text{Subscribers}&\text{Average Local}\\ \text{ }\ &\text{(millions)}&\text{Monthly Bill (\$)}\\ \text{2000}&\text{109.5}&\text{45.27}\\ \text{2001}&\text{128.4}&\text{47.37}\\ \text{2002}&\text{140.8}&\text{48.40}\\ \text{2003}&\text{158.7}&\text{49.91}\\ \text{2004}&\text{182.1}&\text{50.64}\\ \text{2005}&\text{207.9}&\text{49.98}\\ \text{2006}&\text{233.0}&\text{50.56}\\ \text{2007}&\text{255.4}&\text{49.79}\\ \text{2008}&\text{262.7}&\text{50.07}\\ \text{2009}&\text{276.6}&\text{48.16}\\ \text{2010}&\text{300.5}&\text{47.21}\\ \end{matrix}\) One of the scatter plots clearly suggests a linear model. Use the points at t = 10 and t = 20 to find a model in the form y=mx+b.y=mx+b.

Solve inequality: \(\displaystyle-\frac{{1}}{{2}}\le-\frac{{1}}{{4}}{x}–{5}{<}{2}\)