cleffavw8

## Answered question

2022-03-29

Proving $\mathrm{cos}\left({w}_{1}t\right)+\mathrm{cos}\left({w}_{2}t\right)=2\mathrm{cos}\left(\frac{1}{2}\left({w}_{1}+{w}_{2}\right)t\right)\mathrm{cos}\left(\frac{1}{2}\left({w}_{1}-{w}_{2}\right)t\right)$

### Answer & Explanation

Lana Hamilton

Beginner2022-03-30Added 12 answers

Remember that
$\mathrm{cos}\left(\alpha +\beta \right)=\mathrm{cos}\left(\alpha \right)\mathrm{cos}\left(\beta \right)-\mathrm{sin}\left(\alpha \right)\mathrm{sin}\left(\beta \right)$
and
$\mathrm{cos}\left(\alpha -\beta \right)=\mathrm{cos}\left(\alpha \right)\mathrm{cos}\left(\beta \right)+\mathrm{sin}\left(\alpha \right)\mathrm{sin}\left(\beta \right)$
so you can add up both equalities to get
$\mathrm{cos}\left(\alpha +\beta \right)+\mathrm{cos}\left(\alpha -\beta \right)=2\mathrm{cos}\left(\alpha \right)\mathrm{cos}\left(\beta \right)$
so now you want that $\alpha +\beta ={\omega }_{1}t$ and $\alpha -\beta ={\omega }_{2}t$ so you have to solve the system of equations
$\alpha +\beta ={\omega }_{1}t$
$\alpha -\beta ={\omega }_{2}t$
Which gives you
$\alpha =\frac{1}{2}\left({\omega }_{1}t+{\omega }_{2}t\right)$
$\beta =\frac{1}{2}\left({\omega }_{1}t-{\omega }_{2}t\right)$
which is exactly what you wanted to prove

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?