Madilyn Fitzgerald

Answered

2022-02-01

How do you write the trigonometric form of $\frac{5}{2}\left(\sqrt{3}-i\right)$?

Answer & Explanation

Troy Sutton

Expert

2022-02-02Added 13 answers

Answer: $5\left(\mathrm{cos}\left(-\frac{\pi }{6}\right)+i\mathrm{sin}\left(-\frac{\pi }{6}\right)\right)$
Explanation:
The trigonometric form of a complex number $z=a+ib$ is
$z=|z|\left(\mathrm{cos}\theta +i\mathrm{sin}\theta \right)$
where $\mathrm{cos}\theta =\frac{a}{|z|}$
and $\mathrm{sin}\theta =\frac{b}{|z|}$
Here $z=\frac{5}{2}\left(\sqrt{3}-i\right)$
$|z|=\frac{5}{2}\sqrt{3+1}=\frac{5}{2}\cdot 2=5$
$z=5\left(\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)$
$\mathrm{cos}\theta =\frac{\sqrt{3}}{2}$
$\mathrm{sin}\theta =-\frac{1}{2}$
$\theta =-\frac{\pi }{6},\left[\text{mod}2\pi \right]$
The trigonometric form is
$z=5\left(\mathrm{cos}\left(-\frac{\pi }{6}\right)+i\mathrm{sin}\left(-\frac{\pi }{6}\right)\right)=5{e}^{-i\frac{\pi }{6}}$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?