Cameron Russell

Answered

2022-01-22

Let $F\left(x\right)=3x$ and $g\left(y\right)=\frac{1}{y}$, how do you find each of the compositions and domain and range?

Answer & Explanation

Appohhl

Expert

2022-01-23Added 11 answers

For: $\left(f\circ g\right)\left(x\right)$
$h\left(x\right)={\left[3x\right]}_{x=g\left(x\right)=\frac{1}{x}}=3\cdot \frac{1}{x}=\frac{3}{x}$
For: $\left(g\circ f\right)\left(x\right)$
$r\left(x\right)={\left[\frac{1}{x}\right]}_{x=f\left(x\right)=3x}=\frac{1}{3x}$

Madelyn Townsend

Expert

2022-01-24Added 13 answers

Required:
Composite functions: a) $⇒\left(f\circ g\right)\left(x\right)$ and b) $⇒\left(g\circ f\right)\left(x\right)$
For: $\left(f\circ g\right)\left(x\right)$
Step 1
$h\left(x\right)=f\left(g\left(x\right)\right)=f\left(\frac{1}{x}\right)$
Step 2
Replace each occurrence of x in $f\left(x\right)$ with $g\left(x\right)=\frac{1}{x}$
$h\left(x\right)={\left[3x\right]}_{x=g\left(x\right)=\frac{1}{x}}=3\cdot \frac{1}{x}=\frac{3}{x}$
The dummy variable is not relevant so you can do this in terms of x or y or $\theta$
Step 3
function in simplest form no step 3 needed
For: $\left(g\circ f\right)\left(x\right)$
Step 1
$r\left(x\right)=g\left(f\left(x\right)\right)=g\left(3x\right)=$
Step 2
Replace each occurrence of x in $g\left(x\right)$ with $f\left(x\right)=3x$
$r\left(x\right)={\left[\frac{1}{x}\right]}_{x=f\left(x\right)=3x}=\frac{1}{3x}$
Step 3
function in simplest form no step 3 needed

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?