Joanna Benson

2021-12-20

Dot product of two parallel vectors If ${V}_{1}$ and ${V}_{2}$ are parallel, calculate ${V}_{1}\cdot {V}_{2}$. Express your answer in terms of ${V}_{1}$ and ${V}_{2}$.
$V1\cdot V2=$

Hattie Schaeffer

Dot product of two parallel vectors If $\stackrel{\to }{{V}_{1}}$ and $\stackrel{\to }{{V}_{2}}$ are parallel:
${\stackrel{\to }{V}}_{1}\cdot {\stackrel{\to }{V}}_{2}=|{\stackrel{\to }{V}}_{1}||{\stackrel{\to }{V}}_{2}|\mathrm{cos}\left(\theta \right)$
But $\theta =0$.
$\therefore {\stackrel{\to }{V}}_{1}\cdot {\stackrel{\to }{V}}_{2}=|{\stackrel{\to }{V}}_{1}||{\stackrel{\to }{V}}_{2}|\mathrm{cos}\left(0\right)$
$\therefore {\stackrel{\to }{V}}_{1}\cdot {\stackrel{\to }{V}}_{2}=|{\stackrel{\to }{V}}_{1}||{\stackrel{\to }{V}}_{2}|={\stackrel{\to }{V}}_{1}{\stackrel{\to }{V}}_{2}$

Louis Page

nick1337

The dot product of two vectors is which are parallel is,
${\stackrel{\to }{V}}_{1}\cdot {\stackrel{\to }{V}}_{2}=|{\stackrel{\to }{V}}_{1}||{\stackrel{\to }{V}}_{2}|\mathrm{cos}{0}^{\circ }$
$={\stackrel{\to }{V}}_{1}{\stackrel{\to }{V}}_{2}$

Do you have a similar question?