Michael Maggard

2021-12-15

Vector Dot Product Learning Goal: To understand the rules for computing dot products. Let vectors $B=(-3,0,1),C=(-1,-1,2)$

Dot product of two vectors multiplied by constants Calculate$2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}$ . Express your answer numerically. $2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}=$

Dot product of two vectors multiplied by constants Calculate

vicki331g8

Beginner2021-12-16Added 37 answers

Dot product of two vectors multiplied by constants:

$2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}=2(-3,0,1)\cdot 3(-1,-1,2)$

$\therefore 2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}=(-6,0,2)\cdot (-3,-3,6)$

$\therefore 2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}=(-6\times (-3))+(0\times (-3))+(2\times 6)$

$\therefore 2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}=18+0+12$

$\therefore 2\stackrel{\u2015}{B}\cdot 3\stackrel{\u2015}{C}=30$

Papilys3q

Beginner2021-12-17Added 34 answers

Is there a more shortly solution?

nick1337

Expert2021-12-28Added 573 answers

Here:

The dot product of vectors

Here, p and q are constans,

Substitute 2 for p, 3 for q, -1 for