Emeli Hagan

2021-01-22

Find the sum of the infinite geometric series.

$1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...$

Talisha

Skilled2021-01-23Added 93 answers

To find:

The sum of infinite geometric series.

Given:

The geometric series is

Concept used:

The sum of infinite term of the geometric series is

Here, a is first term, r is common ratio( less than 1) and

Calculation:

The first term of the geometric series is 1.

The common ratio can be obtained by the ratio of second term by first term.

The common ratio

Substitute

Thus, the sum of infinite geometric series is

Jeffrey Jordon

Expert2021-12-27Added 2575 answers

Answer is given below (on video)