Joyce Decker

2023-03-10

Find the angle of elevation of the Sun when the shadow of a pole "h" m high is "$\surd 3\text{}h$" m long.

Anastasia Lee

Beginner2023-03-11Added 5 answers

Assume that the Sun is elevated at an angle of θ.

Given, height of pole = h

Now, in ΔABC,

$tan\theta =\frac{AC}{BC}=\frac{h}{\surd 3h}$

$\Rightarrow \mathrm{tan}\theta =\frac{1}{\surd 3}=\mathrm{tan}{30}^{\circ}\Rightarrow \theta ={30}^{\circ}$

Therefore, the angle of elevation of the Sun is ${30}^{\circ}$.

Given, height of pole = h

Now, in ΔABC,

$tan\theta =\frac{AC}{BC}=\frac{h}{\surd 3h}$

$\Rightarrow \mathrm{tan}\theta =\frac{1}{\surd 3}=\mathrm{tan}{30}^{\circ}\Rightarrow \theta ={30}^{\circ}$

Therefore, the angle of elevation of the Sun is ${30}^{\circ}$.