Joyce Decker

2023-03-07

How to find the value of $cot180\xb0$?

neizhojen50q

Beginner2023-03-08Added 3 answers

Determine the trigonometric ratio's value at the specified angle:

Let $x$ be the value equal to $cot180\xb0$.

$\therefore x=cot180\xb0$

$=\mathrm{co}t\left(180\xb0+0\xb0\right)$

$=\mathrm{co}t0\xb0$ $[\because cot\left(180\xb0+a\xb0\right)=co\mathrm{ta}\xb0]$

$=\frac{\mathrm{cos}0\xb0}{\mathrm{sin}0\xb0}$ $\left[\because cot\theta =\frac{cos\theta}{sin\theta}\right]$

$=\frac{1}{0}$ $[\because cos0\xb0=1;sin0\xb0=0]$

$=\mathrm{undefined}$

Hence, the value of $cot180\xb0$ is undefined.

Let $x$ be the value equal to $cot180\xb0$.

$\therefore x=cot180\xb0$

$=\mathrm{co}t\left(180\xb0+0\xb0\right)$

$=\mathrm{co}t0\xb0$ $[\because cot\left(180\xb0+a\xb0\right)=co\mathrm{ta}\xb0]$

$=\frac{\mathrm{cos}0\xb0}{\mathrm{sin}0\xb0}$ $\left[\because cot\theta =\frac{cos\theta}{sin\theta}\right]$

$=\frac{1}{0}$ $[\because cos0\xb0=1;sin0\xb0=0]$

$=\mathrm{undefined}$

Hence, the value of $cot180\xb0$ is undefined.