esterificslo1

## Answered question

2023-02-26

What is the value of $\mathrm{cos}\left(\frac{\pi }{8}\right)$?

### Answer & Explanation

placerdeleermvau

Beginner2023-02-27Added 7 answers

Find the value of $\mathrm{cos}\left(\frac{\pi }{8}\right)$.
In the formula $\mathrm{cos}2A=2{\mathrm{cos}}^{2}A-1$,put $A=\frac{\pi }{8}$:
$\mathrm{cos}\left(2\left(\frac{\pi }{8}\right)\right)=2{\mathrm{cos}}^{2}\left(\frac{\pi }{8}\right)-1⇒\mathrm{cos}\left(\frac{\pi }{4}\right)=2{\mathrm{cos}}^{2}\left(\frac{\pi }{8}\right)-1⇒\frac{1}{2}=2{\mathrm{cos}}^{2}\left(\frac{\pi }{8}\right)-1\left[\because cos\frac{\pi }{4}=cos45°=\frac{1}{2}\right]⇒{\mathrm{cos}}^{2}\left(\frac{\pi }{8}\right)=\frac{1+\frac{1}{2}}{2}⇒{\mathrm{cos}}^{2}\left(\frac{\pi }{8}\right)=\frac{2+1}{22}⇒\mathrm{cos}\left(\frac{\pi }{8}\right)=\frac{2+1}{22}$
Now explain the expression above.
$\mathrm{cos}\frac{\pi }{8}=\frac{2+1}{22}×\frac{2}{2}⇒=\frac{2+2}{4}⇒=\frac{2}{+}$
Therefore, the value of $\mathrm{cos}\left(\frac{\pi }{8}\right)$ is $\frac{2}{+}$.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?