jamessinatraaa

Answered

2021-12-27

How do you evaluate $8{C}_{2}$ ?

Answer & Explanation

autormtak0w

Expert

2021-12-28Added 31 answers

Explanation:

We have,$n{C}_{r}=\frac{n!}{(n-r)!r!}$

$\therefore 8{C}_{2}=\frac{8!}{(8-2)!\cdot 2!}=\frac{8!}{6!\cdot 2!}=\frac{6!\cdot 7\cdot 8}{6!\cdot 2!}=\frac{7\cdot 8}{2!}=\frac{56}{1\cdot 2}=28$

We have,

Barbara Meeker

Expert

2021-12-29Added 38 answers

In the given problem, we have to evaluate $8{C}_{2}$ Here, we will use the formula of combination which is

$n{C}_{r}=\frac{n!}{(n-r)!r!}$ You can easily identify that n is 8 and r is 2 here.

$\Rightarrow 8{C}_{2}=\frac{8!}{(8-2)!2!}$

$=\frac{8!}{6!2!}$

$=\frac{8\times 7\times 6!}{6!2!}$

After calculating the above e\times pression, we get

$=\frac{8\times 7}{2!}$

$=\frac{8\times 7}{2\times 1}$

$=\frac{56}{2}$

$=28$

Therefore,$8{C}_{2}=28$

After calculating the above e\times pression, we get

Therefore,

Vasquez

Expert

2022-01-08Added 457 answers

Most Popular Questions