datgeni5quc

2023-02-23

If $9+(81{)}^{x}=1/{27}^{x}-3$, find x.

Rigoberto Gordon

Beginner2023-02-24Added 7 answers

$9\times {81}^{x}=1/{27}^{x}-3$

${3}^{2}\times {3}^{4x}=(1/3{)}^{3}(x-3)$

${3}^{2}+4x={3}^{-}[3(x-3)]$

Bases are equal. Exponents must be equal.

$2+4x=-(3x-9)$

2+4x = -3x+9

4x+3x = 9-2

7x = 7

x = 7/7

x = 1

Thus, the value of x is 1

${3}^{2}\times {3}^{4x}=(1/3{)}^{3}(x-3)$

${3}^{2}+4x={3}^{-}[3(x-3)]$

Bases are equal. Exponents must be equal.

$2+4x=-(3x-9)$

2+4x = -3x+9

4x+3x = 9-2

7x = 7

x = 7/7

x = 1

Thus, the value of x is 1