Damion Ellis

2023-02-20

$1x35$ is divisible by $9$ if $x$$=$ _______.

assidaveTexziiy

Beginner2023-02-21Added 5 answers

The sum of the digits is

$1+x+3+5$$=$ A number multiple of $9$ .

$x+9$$=$ A number multiple of $9$ .

$x$ is a single-digit number, so

There are two possible cases for $x$ i.e $x$$=$$0$ or $x$$=$$9$ .

Case 1 :

If $x$$=$$0$, $x+9$$=$$0$$+$$9$$=$$9$. ( So, $9$ is divisible by $9$ ).

Case 2:

If $x$$=$$9$, $x+9$$=$$9$$+$$9$$=$$18$. ( So, $18$ is divisible by $9$ ).

So, $x$$=$$0$ or $9$ .

$1+x+3+5$$=$ A number multiple of $9$ .

$x+9$$=$ A number multiple of $9$ .

$x$ is a single-digit number, so

There are two possible cases for $x$ i.e $x$$=$$0$ or $x$$=$$9$ .

Case 1 :

If $x$$=$$0$, $x+9$$=$$0$$+$$9$$=$$9$. ( So, $9$ is divisible by $9$ ).

Case 2:

If $x$$=$$9$, $x+9$$=$$9$$+$$9$$=$$18$. ( So, $18$ is divisible by $9$ ).

So, $x$$=$$0$ or $9$ .