Recent questions in Differential equations

ajedrezlaproa6j
2022-01-18
Answered

\(\displaystyle{\frac{{{d}{f}}}{{{\left.{d}{x}\right.}}}}+{\frac{{{d}{f}}}{{{\left.{d}{y}\right.}}}}={x}{y}\)

rheisf
2022-01-18
Answered

\(\displaystyle{\frac{{{3}{s}-{15}}}{{{2}{s}^{{{2}}}-{4}{s}+{10}}}}\)

jubateee
2022-01-18
Answered

Joanna Benson
2022-01-18
Answered

Mabel Breault
2022-01-18
Answered

\(\displaystyle{\frac{{{d}^{{{2}}}{y}}}{{{\left.{d}{x}\right.}^{{{2}}}}}}-{\frac{{{2}}}{{{y}^{{{2}}}}}}={0}\)

with \(\displaystyle{y}{\left({0}\right)}={a}\ \text{and}\ {y}'{\left({0}\right)}={0}\)

Where a is a known constant.

maduregimc
2022-01-18
Answered

Solve \(\displaystyle{\left({D}^{{{2}}}-{2}{D}+{1}\right)}{y}={x}{e}^{{{x}}}{\sin{{x}}}\)

deiteresfp
2022-01-17
Answered

\(\displaystyle{\left({x}-{2}{x}{y}-{y}^{{{2}}}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}+{y}^{{{2}}}={0}\)

zgribestika
2022-01-17
Answered

\(\displaystyle{\frac{{{d}{p}}}{{{\left.{d}{t}\right.}}}}={10}{p}{\left({1}-{p}\right)}\),

\(\displaystyle{p}{\left({0}\right)}={0.1}\)

Solve and show that \(\displaystyle{p}{\left({t}\right)}\rightarrow{1}\ \text{as}\ {t}\rightarrow\infty\).