keche0b

2022-01-16

1) For the combination of resistors shown, find the equivalent resistance between points A and B.

soanooooo40

Beginner2022-01-17Added 35 answers

Step 1

The expression for equivalent resistance of the resistor connected in series is,

$Req={R}_{1}+{R}_{2}+{R}_{3}$

$=2\mathrm{\Omega}+3\mathrm{\Omega}+4\mathrm{\Omega}$

$=9\mathrm{\Omega}$

Step 2

For parallel connection

$\frac{1}{Req}=\frac{1}{{R}_{1}}+\frac{1}{{R}_{2}}+\frac{1}{{R}_{3}}$

$\Rightarrow Req=\frac{{R}_{1}{R}_{2}}{{R}_{1}+{R}_{2}}=\frac{6\mathrm{\Omega}\times 3\mathrm{\Omega}}{6\mathrm{\Omega}+3\mathrm{\Omega}}$

$\Rightarrow Req=\frac{9\mathrm{\Omega}\times 2\mathrm{\Omega}}{9\mathrm{\Omega}}$

$\Rightarrow Req=2\mathrm{\Omega}$

The expression for equivalent resistance of the resistor connected in series is,

Step 2

For parallel connection

Andrew Reyes

Beginner2022-01-18Added 24 answers

Step 1

Solution:

1) Equivalent resistance$=2+3+4=9ohm$

2) Equivalent resistance$=\frac{6\times 3}{6+3}=\frac{18}{9}=2ohm$

Solution:

1) Equivalent resistance

2) Equivalent resistance