Anabella Gilbert

Answered

2022-12-23

How to find the integral of $\int {\mathrm{sin}}^{3}xdx$ ?

Answer & Explanation

Raymond Patel

Expert

2022-12-24Added 7 answers

$\int {\mathrm{sin}}^{3}xdx=\int \mathrm{sin}x\left(1-{\mathrm{cos}}^{2}x\right)dx\left(\because {\mathrm{sin}}^{2}x=1-{\mathrm{cos}}^{2}x\right)⇒\int {\mathrm{sin}}^{3}xdx=\int \mathrm{sin}xdx-\int \mathrm{sin}x.{\mathrm{cos}}^{2}xdx$
Solve the first integral.
$\int \mathrm{sin}xdx=\mathrm{cos}x+ C$
Solve the second integral.
Let's suppose $\mathrm{cos}x=u$
hence, $-\mathrm{sin}xdx=du$
replace the value,
$-\int \mathrm{sin}x.{\mathrm{cos}}^{2}xdx=\int {u}^{2}du⇒-\int \mathrm{sin}x.{\mathrm{cos}}^{2}xdx=\frac{{u}^{3}}{3}+C⇒-\int \mathrm{sin}x.{\mathrm{cos}}^{2}xdx=\frac{1}{3}{\mathrm{cos}}^{3}x+C$
Combining the aforementioned,$\int {\mathrm{sin}}^{3}xdx=\mathrm{cos}x+\frac{1}{3}{\mathrm{cos}}^{3}x+C$
Therefore the required value of $\int {\mathrm{sin}}^{3}xdx$ is $\mathrm{cos}x+\frac{1}{3}{\mathrm{cos}}^{3}x+C$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?