lilpressler083bl6

2023-02-25

If the area of parallelogram ABCD is 54 square units, what is the area of parallelogram ABEF?

i1goqnkb

Beginner2023-02-26Added 5 answers

O and P are the midpoints of AD and AC respectively.

Then $FR=\frac{DQ}{2}$

Also, AB || CD and AB || EF. This implies that EF || CD.

Area of $ABCD=AB\times DQ$

Area of $ABEF=AB\times FR=AB\times (\frac{DQ}{2})=\frac{1}{2}\times (\text{Area of ABCD})$

Then $FR=\frac{DQ}{2}$

Also, AB || CD and AB || EF. This implies that EF || CD.

Area of $ABCD=AB\times DQ$

Area of $ABEF=AB\times FR=AB\times (\frac{DQ}{2})=\frac{1}{2}\times (\text{Area of ABCD})$