gamomaniea1

2021-12-05

Find derivatives of the functions defined as follows: $y=1.2{e}^{5x}$

Steacensen69

Beginner2021-12-06Added 15 answers

Step 1

the given function is:

$y=1.2{e}^{5x}$

we have to find the derivative of the given function.

Step 2

the given function is$y=1.2{e}^{5x}$

differentiating the both sides of the function with respect to x, we get

$\frac{dy}{dx}=\frac{d}{dx}\left(1.2{e}^{5x}\right)$

$=1.2\frac{d}{dx}\left({e}^{5x}\right)$

$=1.2\times {e}^{5x}\times \frac{d}{dx}\left(5x\right)$

$=1.2\times {e}^{5x}\times 5\times \frac{d}{dx}\left(x\right)$

$=1.2\times {e}^{5x}\times 5\times 1$

$=1.2\times 5\times {e}^{5x}$

$=6{e}^{5x}$

therefore the derivative of the given function$y=1.2{e}^{5x}\text{}is\text{}6{e}^{5x}$

the given function is:

we have to find the derivative of the given function.

Step 2

the given function is

differentiating the both sides of the function with respect to x, we get

therefore the derivative of the given function