Deragz

Answered

2022-01-18

The number of cases of tetanus reported in the US in a single month has a Poisson distribution with a parameter of $\lambda =4.0$. What is the probability that five or more cases will be reported?

Answer & Explanation

Lindsey Gamble

Expert

2022-01-18Added 38 answers

Let X be the number of cases in 1 month
X follows Poisson distribution with parameter (rate) $\lambda =4$
$X\sim$ Poisson $\left(\lambda =4\right)$
$P\left(X\ge 5\right),\lambda =4$
$P\left(X\ge 5\right)=1-P\left(0\le X\le 4\right)$ where $P\left(0\le X\le 4\right)=P\left(X=0\right)+P\left(X=1\right)$
+P(X=2)+P(X=3)+P(X=4)
$P\left(X=0\right)=\frac{{e}^{-\lambda }{\lambda }^{0}}{0!}=\frac{{e}^{-4}{\left(4\right)}^{0}}{0!}=0.018316$
$P\left(X=1\right)=\frac{{e}^{-\lambda }{\lambda }^{1}}{1!}=\frac{{e}^{-4}{\left(4\right)}^{1}}{1!}=0.073263$
$P\left(X=2\right)=\frac{{e}^{-\lambda }{\lambda }^{2}}{2!}=\frac{{e}^{-4}{\left(4\right)}^{2}}{2!}=0.146525$
$P\left(X=3\right)=\frac{{e}^{-\lambda }{\lambda }^{3}}{3!}=\frac{{e}^{-4}{\left(4\right)}^{3}}{3!}=0.195367$
$P\left(X=4\right)=\frac{{e}^{-\lambda }{\lambda }^{4}}{4!}=\frac{{e}^{-4}{\left(4\right)}^{4}}{4!}=0.195367$
Answer=1- (0.018316 + 0.073263 + 0.146525 + 0.195367 + 0.195367)=0.371163
Use excel function POISSON.DIST (X, mean, cumulative) to calculate
$P\left(X\ge 5\right)=1-P\left(X\le 4\right)=1-{F}_{X}\left(4\right):$
1-POISSON.DIST (4,4 TRUE)=0.37116306482
$P\left(X\ge 5\right)=0.3712$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?