William Cleghorn

Answered

2021-12-28

Integration techniques. Use the methods introduced evaluate the following integrals.
$\int \frac{3x}{\sqrt{x+4}}dx$

Answer & Explanation

vicki331g8

Expert

2021-12-29Added 37 answers

Step 1
Given integral is
$I=\int \frac{3x}{\sqrt{x+4}}dx$
We will use the substitution method to solve the given integral.
Let $\sqrt{x+4}=t$,...(i)
Taking square on both sides.
$x+4={t}^{2}$
$x={t}^{2}-4$
Differentiate (i) with respect to x.
$\frac{1}{2\sqrt{x+4}}=\frac{dt}{dx}$
$\frac{dx}{\sqrt{x+4}}=2dt$
Step 2
On substituting $x={t}^{2}-4$ and $\frac{dx}{\sqrt{x+4}}=2dt$ in given integral, we get
$I=3\int \left({t}^{2}-4\right)2dt$
$=6\int \left({t}^{2}-4\right)dt+C$
$=6\left[\frac{{t}^{3}}{3}-4t\right]+C$
$=2{t}^{3}-24t+C$
Putting $t=\sqrt{x+4}$, we get
$I=2{\left(\sqrt{x+4}\right)}^{3}-24\sqrt{x+4}+C$
$I=2{\left(\sqrt{x+4}\right)}^{\frac{3}{2}}-24\sqrt{x+4}+C$
Step 3
Answer: The value of the given integral is $I=2{\left(\sqrt{x+4}\right)}^{\frac{3}{2}}-24\sqrt{x+4}+C$.

Thomas White

Expert

2021-12-30Added 40 answers

$\int \frac{3x}{\sqrt{x+4}}dx$
We make the change of variables:
$x+4={t}^{2}$
Therefore:
$x={t}^{2}-4$
dx=2tdt
$\int \frac{3\cdot {t}^{2}-12}{t}\cdot 2\cdot t\cdot dt$
Simplify the fractional expression:
$\int \left(6\cdot {t}^{2}-24\right)dt$
$\int \left(6\ast {t}^{2}-24\right)dt=2\ast {t}^{3}-24\ast t$
Substituting instead of $t=\sqrt{x+4}$, we get:
$I=2{\left(x+4\right)}^{\frac{3}{2}}-24\sqrt{x+4}+C$

karton

Expert

2022-01-04Added 439 answers

$\begin{array}{}\int \frac{3x}{\sqrt{x+4}}dx\\ \int \frac{3t-12}{\sqrt{t}}dt\\ \int \frac{3t-12}{{t}^{\frac{1}{2}}}dt\\ \int \frac{3t}{{t}^{\frac{1}{2}}}-\frac{12}{{t}^{\frac{1}{2}}}dt\\ \int 3{t}^{\frac{1}{2}}dt-\int \frac{12}{{t}^{\frac{1}{2}}}dt\\ 2t\sqrt{t}-24\sqrt{t}\\ 2\left(x+4\right)\sqrt{x+4}-24\sqrt{x+4}\\ 2\left(x+4\right)\sqrt{x+4}-24\sqrt{x+4}+C\end{array}$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?