lwfrgin

2021-10-22

Using only the definition of Riemann sum and your knowledge of limits, compute the exact area under the curve $2{x}^{2}$ between x=-2 and x=1.

krolaniaN

Skilled2021-10-23Added 86 answers

Divide the are in n strips of rectangles with breath:

$\mathrm{\u25b3}x=\frac{1-(-2)}{n}$

$=\frac{3}{n}$

Now using right hand Riemann sums the area under the curve$2{x}^{2}$ is:

$S}_{n}=\mathrm{\u25b3}x\sum _{i=1}^{n}2{(-2+i\mathrm{\u25b3}x)}^{2$

$=\frac{3}{n}\sum _{i=1}^{n}2{(-2+i\frac{3}{n})}^{2}$

$=\frac{3}{n}\sum _{i=1}^{n}2(4-\frac{12}{n}i+\frac{9}{{n}^{2}}{i}^{2})$

$=\frac{24}{n}\sum _{i=1}^{n}1-\frac{72}{{n}^{2}}\sum _{i=1}^{n}i+\frac{54}{{n}^{3}}\sum _{i=1}^{n}{i}^{2}$

$=\frac{24}{n}\times n-\frac{72}{{n}^{2}}\times \frac{n(n+1)}{2}+\frac{54}{{n}^{3}}\times \frac{n(n+1)(2n+1)}{6}$

$=24-36(1+\frac{1}{n})+9(1+\frac{1}{n})(2+\frac{1}{n})$

Now to calculate the area decrease the width of the rectangular strips to infidecimal value thereby increasing the number of rectangles to infinity.

Finally the required area of the rectangle will be:

$\underset{n\to \mathrm{\infty}}{lim}{S}_{n}=\underset{n\to \mathrm{\infty}}{lim}24-36{(1+\frac{1}{n})}_{1+\frac{1}{n}}(2+\frac{1}{n})$

$=24-36(1+0)+9(1+0)(2+0)$

$=24-36+18$

$=6$

Thus, area under the curve$2{x}^{2}$ is 6

Now using right hand Riemann sums the area under the curve

Now to calculate the area decrease the width of the rectangular strips to infidecimal value thereby increasing the number of rectangles to infinity.

Finally the required area of the rectangle will be:

Thus, area under the curve

What is the derivative of the work function?

How to use implicit differentiation to find $\frac{dy}{dx}$ given $3{x}^{2}+3{y}^{2}=2$?

How to differentiate $y=\mathrm{log}{x}^{2}$?

The solution of a differential equation y′′+3y′+2y=0 is of the form

A) ${c}_{1}{e}^{x}+{c}_{2}{e}^{2x}$

B) ${c}_{1}{e}^{-x}+{c}_{2}{e}^{3x}$

C) ${c}_{1}{e}^{-x}+{c}_{2}{e}^{-2x}$

D) ${c}_{1}{e}^{-2x}+{c}_{2}{2}^{-x}$How to find instantaneous velocity from a position vs. time graph?

How to implicitly differentiate $\sqrt{xy}=x-2y$?

What is 2xy differentiated implicitly?

How to find the sum of the infinite geometric series given $1+\frac{2}{3}+\frac{4}{9}+...$?

Look at this series: 1.5, 2.3, 3.1, 3.9, ... What number should come next?

A. 4.2

B. 4.4

C. 4.7

D. 5.1What is the derivative of $\frac{x+1}{y}$?

How to find the sum of the infinite geometric series 0.9 + 0.09 + 0.009 +…?

How to find the volume of a cone using an integral?

What is the surface area of the solid created by revolving $f\left(x\right)={e}^{2-x},x\in [1,2]$ around the x axis?

How to differentiate ${x}^{\frac{2}{3}}+{y}^{\frac{2}{3}}=4$?

The differential coefficient of $\mathrm{sec}\left({\mathrm{tan}}^{-1}\left(x\right)\right)$.