Find Answers
Get Study Tools
Series
midtlinjeg
2021-02-12
Tasneem Almond
Skilled2021-02-13Added 91 answers
Given that:(x−1)y′′+2y′−4y=0,y(0)=2,y′(0)=6Let y=∑n=0∞anxn be a power series expansion of the required solution.y=∑n=0∞anxny′=∑n=0∞an(n)xn−1=a1+2a2x+3a3x2+...y″=∑n=0∞ann(n−1)xn−2=2a2+6a3x+12a4x2+20a5x3+...Now, find the Taylor series expansions of the given series:(x−1)y′′+2y′−4y=0,y(0)=2,y′(0)=6y(0)=2⇒a0=2y′(0)=6⇒a1=6(x−1)y′′+2y′−4y=0
⇒(x−1)(2a2+6a3x+12a4x2+20a5x3+...)+2(a1+2a2x+3a3x2+...)−4(a0+a1x+a2x2+a3x3+...)=0⇒(2a2x+6a3x2+12a4x3+...)−(2a2+6a3x+12a4x2+20a5x3+...)+(2a1+4a2x+6a3x2+...)−(4a0+4a1x+4a2x2+4a3x3+...)=0⇒(2a2x+6a3x2+12a4x3+...)−(2a2+6a3x+12a4x2+20a5x3+...)+(12+4a2x+6a3x2+...)−(8+24x+4a2x2+4a3x3+...)=0Compare the coefficient of x0,x1 and power:(−2a2+12−8)+(2a2−6a3+4a2−24)x+...−2a2+12−8=0⇒−2a2=−12+8⇒a2=2Coefficient of x:2a2−6a3+4a2−24=02a2−6a3+4a2=24This is helpful20Flag
20
Jeffrey Jordon
Expert2021-12-27Added 2575 answers
Answer is given below (on video)
Do you have a similar question?
Recalculate according to your conditions!
Ask your question. Get an expert answer.
Let our experts help you. Answer in as fast as 15 minutes.
Didn't find what you were looking for?