Nash Frank

Answered

2022-07-17

a)Express the given quantity as a single logarithm.
$\frac{1}{3}\mathrm{ln}\left(x+2{\right)}^{3}+\frac{1}{2}\left[\mathrm{ln}\left(x\right)-\mathrm{ln}\left({x}^{2}+3x+2{\right)}^{2}\right]$
b) Solve each equation for x.
1)${e}^{5-4x}=4$
x=?
2) $\mathrm{ln}\left(3x-13\right)=8$
x=?

Answer & Explanation

Jeroronryca

Expert

2022-07-18Added 13 answers

a)Solution:
$\frac{1}{3}\mathrm{ln}\left(x+2{\right)}^{3}+\frac{1}{2}\left[\mathrm{ln}\left(x\right)-\mathrm{ln}\left({x}^{2}+3x+2{\right)}^{2}\right]$
$=\mathrm{ln}\left(x+2{\right)}^{3/3}+\frac{1}{2}\mathrm{ln}x-\frac{1}{2}\mathrm{ln}\left({x}^{2}+3x+2{\right)}^{2}$
$=\mathrm{ln}\left(x+2\right)+\mathrm{ln}{x}^{1/2}-\mathrm{ln}\left({x}^{2}+3x+2{\right)}^{2/2}$
$=\mathrm{ln}\left(x+2\right)\left({x}^{1/2}\right)-\mathrm{ln}\left({x}^{2}+3x+2\right)$
$\left[\because \mathrm{ln}a+\mathrm{ln}b=\mathrm{ln}ab\right]$
$=\mathrm{ln}\frac{\left({x}^{3/2}+2{x}^{1/2}\right)}{\left({x}^{2}+3x+2\right)}$
$\left[\because \mathrm{ln}a-\mathrm{ln}b=\mathrm{ln}\frac{a}{b}\right]$

$=\mathrm{ln}\frac{\left({x}^{3/2}+2{x}^{1/2}\right)}{\left({x}^{2}+3x+2\right)}$

Darryl English

Expert

2022-07-19Added 2 answers

b)Solution:
1)${e}^{5-4x}=4$
$⇒5-4x=\mathrm{ln}4$
$⇒4x=5-\mathrm{ln}4$
$⇒x=\frac{5}{4}-\frac{1}{4}\mathrm{ln}4$
2)$\mathrm{ln}\left(3x-13\right)=8$
$⇒3x-13={e}^{8}$
$⇒3x=13+{e}^{8}$
math xmlns="http://www.w3.org/1998/Math/MathML"> x = 1 3 ( 13 + e 8 )

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?