Joseph Krupa

Answered

2022-01-15

Derivatives Evaluate the following derivatives.
$\frac{d}{dt}\left({t}^{\frac{1}{t}}\right)$

Answer & Explanation

Thomas White

Expert

2022-01-16Added 40 answers

Step 1
To evaluate
$\frac{d}{dt}\left({t}^{\frac{1}{t}}\right)$
Step 2
Let $y={t}^{\frac{1}{t}}$
Taking logarithm on both sides
$\mathrm{ln}\left(y\right)=\mathrm{ln}\left({t}^{\frac{1}{t}}\right)$
$\mathrm{ln}\left(y\right)=\frac{1}{t}\mathrm{ln}\left(t\right)$
Differentiate both sides with respect to t
$\frac{1}{y}\frac{dy}{dt}={\left(\frac{1}{t}\right)}^{\prime }\mathrm{ln}\left(t\right)+\left(\frac{1}{t}\right){\left[\mathrm{ln}\left(t\right)\right]}^{\prime }$
$\frac{dy}{dt}=y\left[-\frac{1}{{t}^{2}}\mathrm{ln}\left(t\right)+\frac{1}{t}×\frac{1}{t}\right]$
$\frac{dy}{dt}=y\left[-\frac{1}{{t}^{2}}\mathrm{ln}\left(t\right)+\frac{1}{{t}^{2}}\right]$
$\frac{d}{dt}\left({t}^{\frac{1}{t}}\right)=\left({t}^{\frac{1}{t}}\right)\left[\frac{1}{{t}^{2}}\left(1-\mathrm{ln}\left(t\right)\right)\right]$

Lakisha Archer

Expert

2022-01-17Added 39 answers

${\left({t}^{\frac{1}{t}}\right)}^{\prime }={\left[{\left({e}^{\mathrm{ln}t}\right)}^{\frac{1}{t}}\right]}^{\prime }={\left({e}^{\left(\frac{1}{t}\right)\cdot \mathrm{ln}t}\right)}^{\prime }=$
$={e}^{\left(\frac{1}{t}\right)\cdot \mathrm{ln}t}\cdot {\left(\frac{1}{t}\mathrm{ln}t\right)}^{\prime }=$
$={e}^{\left(\frac{1}{t}\right)\cdot \mathrm{ln}t}\cdot \left(-\frac{1}{{t}^{2}}\cdot \mathrm{ln}t+\frac{1}{t}\cdot \frac{1}{t}\right)=$
$={t}^{\frac{1}{t}}\cdot \frac{1}{{t}^{2}}\left(-\mathrm{ln}t+1\right)$
$={t}^{\left(\frac{1}{t}\right)-2}\left(1-\mathrm{ln}t\right)$
Result:
${t}^{\left(\frac{1}{t}\right)-2}\left(1-\mathrm{ln}t\right)$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?